ORACLE

Oracle® Communications
DSR Release 8.3

DCA Programmer’s Guide
E93198 Revision 01

September 2018

CONFIDENTIAL — ORACLE RESTRICTED

DSR Release 8.3 DCA Programmer’s Guide
Copyright © 2011, 2018 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 ii

CONFIDENTIAL — ORACLE RESTRICTED

Table of Contents

IO o o T U Ty 1 o] o PRSP 1
1.1 RETEIBNCES ...ttt et bbb bbb b e bbb bbbttt R bbb e nen s 1

I € [0 Y S PR 1

1.3 TIMINOIOGY ..ttt bbbt bbb b et e e b bbb b n e 2

1.4 WARNING on Copy and Pasting Code from thisS GUITEcceovririiiiineieeeee e 2

2. DCA Activation and DeactiVatiONccoiieiiiieiiieiesee et 3
2.1 DCA ACHIVALION.....cuviuiiiieiieiieie ettt st et bbbttt b b bbb e e s e e bttt b et e nb et e enes 3
2.1.1 DCA Framework ACHVALION.cciiiiieieie ettt see st e nee e 4

2.1.2 DCA APP ACTIVALION ...ttt 5

2.1.3 Post-Activation DCA AP SEALE......ccviieiiie et sre s 5

2.2 DCA DEACHIVALION ...ttt ettt sttt sttt sttt e e st e bt et e et be st et e et enes 5
2.2.1 DCA Application De-ACHIVALIONccciviiiiiiiiiie e 5

2.2.2 DCA Framework De-ACHIVALION.ccviiiiiiirieie et 6

3. DCA App Provisioning — The BIackliSt DCA APP ...ooiiiiiiiiieiiieeee e 6
3.1 The BIACKIST DCA AP oottt sttt st te s st e st et s beese e beabe e stesteeseesbeetsesbesneeneenreens 6

3.2 PIEICQUISITES ...tttk bbbttt b bbbttt e b b e bt bbb bt n s 6

TR T I 4 Tc N o 0T OSSP 6
3.3.1 Step 1: Configure the DCA App's General Options and Behavior..........c.ccccocveveiviienneane. 6

3.3.2 Step 2: Create New Development Application VErsioncccceveveeiseneneneseseeenns 7

3.3.3 Step 3: Define the Configuration Data StrUCLUE..........ccovvevviiereireie e 8

3.3.4 Step 4: Provision the Configuration Data............c.ccccveieeiiiiiiiicic e 9

3.3.5 Step 5: Provision the BUSINESS LOGICcvcveieiiiiiiie ettt 10

3.3.5.1 Where is the Perl Script Being EXeCULEA?ccovveiiiiiiiiecece e 11

3.3.5.2 How Do the Event Handlers Get INVOKEd?cccovviiieneieieencce e 11

3.3.5.3 How Does the DCA App Configuration Data Get Accessed?........ccocvvvervennnnn. 11

3.3.5.4 What is the Main Part GO0 FOI?.........cccooiviieiiiie e 12

3.3.6 Step 6: Render Flow Control Chart, Save Script, Check Syntax.........ccccccoevevvevieiieriennnn, 12

3.3.7 Step 7: Test the DCA APP VEISIONcueiuviiiiecice ettt st 13

3.3.8 Step 8: Promote the DCA App Version to Production Statecceeevevveienenivenienenn, 14

4. DCA ApPlication LIfECYCIE.......oooiie ettt 15
5. Developing STAteful DCA ADPS. .. oottt bbbttt bbbt ase e 17
6. A Stateful DCA App Using the U-SBR INfrastruCture............cccooveiveiiiicieeic e 18
6.1 The COUNTULR DCA APP ..ttt sb bbbttt bt b e 18

I o (=T 1o UYL OSSPSR 18

TR I g Tc N o 0TSSR 18
6.3.1 Step 1: Configure the DCA App's Global Options and Behavior..............ccccoeevvveiennenn, 19

6.3.2 Step 2: Create a New Development VErSIONccovveeieieeieneiie e 20

6.3.3 Step A: Configure the U-SBR DBScccoioiiiiiiiie ettt st 20

6.3.3.1 Step A.L: Servers Configuration..........ccoocoveeereniereseee e e 21

6.3.3.2 Step A.2: Server Group Configurationccooeeeieniene e 22

6.3.3.3 Step A.3: Places Configuration...........cceoviriniieneneneeesese s 23

6.3.3.4 Step A.4: Place Associations Configuration.............ccceeeeeiinineneneneneneneenns 24

6.3.3.5 Step A.5: Resource Domain Configurationc.ccoceeevereiniinennnc e 25

6.3.3.6 Step A.6: SBR Database Configuration...........ccccooevoerieieneeieneneee e 26

DCA Programmer’s Guide, E93198 Revision 01, September 2018 iii

CONFIDENTIAL — ORACLE RESTRICTED

6.3.4 Step 3: Define the Configuration Data SChema...........ccccceviveiiiiiiii v 27

6.3.5 Step 4: Provision the Configuration Data............ccceviiiiininiieieceees e 27

6.3.6 Step 5: Provision the DCA ApPP BUSINESS LOGICccviiiiiriiiiieicieesesese e 27
6.3.6.1 What Does a State ConsiSt Of?........cccveieiiiiiieiiiiiie e 32

6.3.6.2 What are Asynchronous API Calls and Callbacks?...........cccccocevvvviveveiiiiennnne 33

6.3.6.3 How is the U-SBR State Returned to the Perl SCript?........cccocvvvviveviiiniiennnn 33

6.3.6.4 What is Concurrent in a concurrentUpdate?.........ccocvvvveveie v 33

6.3.7 Step 6: Render the FIow Control Chartccccevviieii i 34

6.3.8 Step B: Logical to Physical U-SBR DB Name Mappingccccoeeveirienineneneneniennenns 34

6.3.9 Step 7: Test the DCA APP VEISIONccciuiiiieieiicie e 35
6.3.10 Step 8: Promote the DCA App Version to Productionccccccevvveive i, 35

7. MONITOTING @ DCA AP eoteerieiieit ettt e e e e e e este et e e se e s te e teaseesreeseaseesreenteaneenres 36
8. A DCA ApP UsSiNG CUSTOM IMEALSoiiiiieiieie et nne s 36
ST N gLl | S DO N Ao o ISR 36
ST o (=] =T UYL SRR 37
ST T I 4 Tc N o 0TSSR 37
8.3.1 Step I: Differentiate @ C-IMEALcooovviiec e 37

8.3.2 Step 1: Configure the DCA App's General Options and Behavior.............ccccccevvvveiennenn, 38

8.3.3 Step 2: Create a New Development VEISION ..o 38

8.3.4 Step 3: Define the Configuration Data SChEMA..........cccoviiiiiiiiiieieeee e 38

8.3.5 Step 4: Provision the Configuration Data..........c.ccccccveiviiiiieic i 38

8.3.6 Step 5: Provision the DCA ApPP BUSINESS LOGICcviiriiiiiiiienienieieescsie e 38

8.3.7 Step 6: Render the FIow Control Chart ... 38

8.3.8 Step 7: Test the DCA APP VEISIONcviiuveeiie ettt st 38

8.3.9 Step 8: Promote the DCA App Version to Productioncccceeeveiieveve s, 41

0. GUI OVEIVIBW.. ..ttt bbbttt bbb e bt b e e b e s e e b be et e st e be e b e aneene e 41
0.1 NO/SO IfFEIBINCES ...evveive ettt sttt ettt et ste e et sra et e s teeseesteete e tesseenaenreaneeseeares 41
0.2 INO SCIBENS.....ee ettt ettt ettt b et b et h et e a bt e s bt e bt e s b e e she e she e e ab e e R bt e bt e bt e abeeebeeeb et enneenbeentee e 42
9.2.1 CONFIQUIALION SCIEENvicuiiiicieete ettt st s r e s be e e e st e s be et e sbeete e besaeeneesre e 43

0.2.2 CUSEOM IMEALS ...ttt sttt e sbe e st s e st beesbeesteestae s 43
0.2.2.1 VieW CUSLOM MEALS ..ot s 43

9.2.2.2 Configure the Counter Custom MEAL Template..........cccccevvivieieiieneieceennn, 44

9.2.2.3 Configure the Basic Custom MEAL Template...........cccoevvevvivicieiiese e, 45

9.2.2.4 Configure the Rate Custom MEAL Templateccocoeveiiiviiiiniiiiece 46

9.2.2.5 Configure the Event Custom MEAL Templatecccoovveiviiiinininencene 47

9.2.3 GENEral OPLIONS SCIEEMviviiiieiiiteeie ettt st et esbe e sbesbe et e sbeere e besaeeneenre e 48

9.2.4 Trial MPS ASSIGNIMENT SCIEENoiviiiie et ce ettt ettt sre s te e s be e b saeernesre e 48

9.2.5 ApPlication CONLIOI SCIEENccuoiiiieieieest e 49

9.2.6 Create New DeVvelOPMENT SCIEEN......c.ciiiiiiie et 50

9.2.7 Copy to New DeVelOpMENT SCrEEN.........cccuiiiie ettt 50

9.2.8 EXPOIt POP-UP WINUOWcviiiiiiiiiieisese et 51

9.2.9 IMPOIt POP-UP WINAOWccuiiiiiiiiiieiieiese et 51
9.2.10 SBR DB Name Mapping SCIEENccvieeieieeiee et ereestesee e steaeeseesteeeesreeseeseesneeneeseens 53
9.2.11 Development ENVIFONMENT..........ccoii ittt 54
9.2.12 TaBIES SCIEEN......ccueeieiie ettt ettt a e te e s e st e e teesbesbeenaestesneeneenreens 54
9.2.13 ProviSion TableS SCIEENcooiiiiie ettt st nee e 57

0.3 SO SCIEANS ...tttk ettt stttk b bt he e e h bt e s bt ekt eeb e e she e she e e Rt e oAbt e bt ekt e ke e ke e eE e e enneenbeenre e e 59
9.3.1 Application CONLIOI SCIEENccueiiiieieieist et 59

DCA Programmer’s Guide, E93198 Revision 01, September 2018 iv

CONFIDENTIAL — ORACLE RESTRICTED

10.

12.
13.

9.3.2 EXPOrt POP-UP WINUOWoviiiieiiiieiie ettt sttt ne e 60

9.3.3 IMPOrt POP-UP WINAOWcviiiiiiiieieesiese e 60

0.3.4 TADIES SCIBEN.....c ettt et e st seesteentesbeeneesbenneeneenee e 60

9.3.5 Provision TableS SCIEENccuiiiiiiiiiiiise ettt 61

SRR (=T (1@ 14 o] 1SS 62
Development ENVIFONMENT OVEINVIEWcciieieiieieeie e steesie et sreesre e snee e sns 64
10.1 Development ENVIrONMENT IMOGAEScvoieiiiiiiiiciiisie e 64
0220 - |0 11 | OSSP 65
10.3 COUE TEXE EQITON ...ttt ettt bttt bbbt 66
10.4 FIOW CONLIOI CNAIT.......eciieie ettt te st e s te e nbesseestesteaneeseesreeneenneas 67
10.4.1 STAMT SYMDOL ...t 67
10.4.2 Execution BIOCK SYMDOLc.coiiiiie e 67
10.4.3 Asynchronous Call Symbol ..o 67
10.4.4 Termination SYMDOccooii e 68
10.4.5 Delete symbol from the Flow Control Chartcccoociiiiiiiicic e 68
10.4.6 Flow Control Chart Validationccocciiiriiiieiie e 68
10.4.7 COMMANG OULPUL ATBA.......eveieiieiieiieierit sttt b e 69
O (=Y o [T g - U SR 69
F0.4.9 SAVE ...ttt bt bt R et Rttt et e e nhe e nhe e nnrennnennnas 69
10.4.10 CRECK SYNTAXeviiiiieiiteiieiteiee ettt bbbttt ettt e 70

10.4. 11 COMPIIE ..ottt bbbttt bbb e 70

10.5 RACE CONTITIONS ..ottt ettt b et s et e bt e be sttt e e 70
N e £ PO TPRRRPTSI 72
L1 L TRE EDL AP ..ttt etttk sttt et e bt bbbt ns 72
11.1.1 API to Manipulate the Diameter HEAUENccovveieiiiiiie e 72
11.1.2 API to Manipulate the DIameter AVPSccoivoiiiiiieiise et 75
11.1.3 API to Manipulate the Diameter Grouped AVPScccccviveieiieie e 80

11.2 Diameter Transaction STAeTUl APIScoviviiie et 82
N I [=T g LY £ T T o] SR 82
11.2.2 Diameter Transaction Context Variables...........ccovveiriiiiiiineieeee e 82

11.3 Read DCA App Configuration Data............ccueiiiiiriniiiieiieeieese s 83
R o (o T 1] T N o SRS SR 83
11.5 DEBUGGING APL ..ot ettt s b e s be et e s beere e besae et e sbe e e e sreeteenbenres 85
11,6 CUSEOM IMEAL AP ...ttt sttt ettt sttt e ne b e e neebesneebenae e e e e 86
11.6.1 Counter TEMPIALE AP ..ot 86
11.6.2 RAtE TEMPIALE......oiiteeiecie et ettt s beebe e be s aeeeesbeenresreeres 88
11.6.3 BASIC TEMPIALEocvveieiiiciccte ettt s beebe e be s beebesba e e e sreeres 91
11.6.4 EVENE TEMPIALE......c.oiiiiiiieieee bbbt 94

A O TS = g USSR 95
11.7.1 The Prototype of Queries and QUEry RESUILSccccveviieiic i 95
11.7.1.1 Specifying the QUENYoe ot 95

11.7.1.2 Retrieving the QUEry RESUITccooiiiiiiiiiiie e 97

11.7.2 The U-SBR APT FUNCLIONSooiiiiiie ittt 98

11.8 PEEI INTOIMALIONiiiieeie ettt sttt sttt et st e e e ste e seeereeneesneeneenne e 101
11.8.1 Check for Configured PEEN.cviiiiiiieieie e 101
11.8.2 Fetch the Originator PEET.oiiiiee ettt nne s 101
INteraction WIth IDIHcoo it nne s 101
BST PraACTICES ... eeiiiiitieii ettt bt b e bbbt et e b b 104

DCA Programmer’s Guide, E93198 Revision 01, September 2018 %

CONFIDENTIAL — ORACLE RESTRICTED

13.1 The Main Part of the Perl SCrIPL........ccovoii i 104
13.2 Perl GIobal VariahIEscoeiiiiieeciee ettt nee e 104
13.3 Returning Control from a Perl SUDIOULINGccoiiiiiiiceee s 105
1304 CAlIDACKS ...ttt bttt b bbbttt bbb et e s 105
13.5 Sending multiple U-SBR QUEKIESeciveiiieiie ittt st sttt sae e 106
13.6 Accessing Lower Layer Data from Mediationccoeoeieiiniiiiiiniieneeeeesesese s 106
13.7 Performance TUNINGcviii ettt st s beete e e s re et e sbe e e e sbeeraesbesaeeneenee e 106

List of Figures

Figure 1: DCA Activation- Deactivation LifECYCIEccooveiiiiiiiiiiieccee e 3
Figure 2: DCA FrameWorK MENUcc.ooiiiiiiiiiie e 4
Figure 3: DCA MEASUIEIMENTS.ccueivereeeeeieeiesie st sttt sttt sb b s r bbb b b e nennen s 4
T U I S 1O N [o TSRS 4
Figure 5: DCA APPLICAtION IMBNU......c.iiiiiieieie ettt sre et s re e te e sreans 5
Figure 6: Create a New AppPliCatioN VEISIONccciiiiiiiieieisiisi et 7
Figure 7: New Application VErsion Created...........cocuuerireiieiniiisi st 7
Figure 8: Create @ NeW Datahase.........c.coveieiiiiiiiiisie e 8
Figure 9: Provision Table BIACKLISEccccviiiieie ettt 9
Figure 10: Insert a New Data Row to the BlackList Tablecccociviiiiiicicicccc e 9
Figure 11: Provision DCA DB TabIESccocoiiiiiiiiiie e 9
Figure 12: The Blacklist DCA App Development ENVIFONMENTcccooeieieiieiiiininesesesieieas 10
Figure 13: BIACKIISt PErT COUEoviieiiieicise e 10
Figure 14: Event Handler Subroutine Name Configuration.............ccocevveviieieniiniieve e 11
Figure 15: Development ENVironment BULLONSc.coiiiiiiiiiiiic et 12
Figure 16: Trial MP ASSIGNMENT.......oitiiiiiiiieirieste ettt 13
Figure 17: Transitions from Development to Production Stateccccoeveivieiniiniinene e 15
Figure 18: Creating a New DCA APP VEISIONcoiiiiiiiiicieie ettt te e sre e st sresre s 15
Figure 19: Assignment of the Version t0 @ DA-MP..........cccooiiiiiiiiiieicce e 17
Figure 20: SBR Topology EXaMPIEcccoiiiiiicice ettt ettt et sre s 20
Figure 21: Servers CONfIQUIALIONc..oiviiiiiiiisie et 21
Figure 22: Server Groups CONFIQUIATION..........cviiiiiiieiciecee e 22
Figure 23: Places ConfigUIatioN.........cc.coviiiiiiiec ettt st sre et sre s 23
FIQUIE 24: VIBW PIACEScvviiie ettt ettt st et sbe e be et s be et e s beeeesbeetaesbesre s 23
Figure 25: Create Place ASSOCIALIONcc.ciuiiiciiiecicte ettt be e sresre b sre s 24
Figure 26: VieW Place ASSOCIAIONoviieiiiiiiiiite ettt 24
Figure 27: SBR Resource Domain ConfigUIation............coeveiriniiinenie e 25
Figure 28: DCA Application MP Resource Domain Configurationccccocveeererenieneeiennnnas 25
Figure 29: View Resource Domain ConfigUrationccoocviiiriineene e 25
Figure 30: Create SBR Database...........ooviiriiiiee e 26
Figure 31: VieW SBR DataDaSecooiiiiiiiiiiiie et 27
Figure 32: COUNULR Call FIOW.......ccuoiiiiiiiiiiiie e 28

DCA Programmer’s Guide, E93198 Revision 01, September 2018 Vi

CONFIDENTIAL — ORACLE RESTRICTED

Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:

COUNTULR Pl COUR.......oiiiiieieieie ettt 32
A Counter INCrEeMENT RACEcoviiiiiieieee e e 34
FIOW CONEIOI Chart.......coveiieeceee et neesne s 34
SBR DB Name MaPPiNgcveveiiiiiiisiisiesieneeeeee st 35
View SBR DB Name MapPing.......ccccveveiieiienieeie it sie e see et sae e esae e snsenesne e 35
TestRate DIffereNtiationcooeiiiiiiii s 37
The "Rate" DCA APP COUE......ooieiecice ettt 38
Filter the DCAIRALE KPIS....cuiiieiiice et s sre e sne s 39
Display TeStRALE KPIooiiiieieeei e 39
Filter the DCA:RAte MEASUIEIMENIS.ciiiiieriiieieieesie st 40
Display the TestRate MEASUIEMENTS........cccveiieie et e se e e e sre st e e sres 40
TestRate AlArm HISTOIYcovi i e 41
INO SCIBENS ...ttt ettt b bbbt b e st e et b e e st e e be e sbe e sbeesnbesnbeants 42
NO CoNFIGUIALION SCIEENMoviieieieiieiie ettt 43
The Custom MEAL VIBW SCIEENcviiiiriiiie ettt 43
The Counter Template Configuration SCreeNccvveieiieieiie s 44
The Basic Template Configuration SCrEEN..........cccooveieiiiiiiiene s 45
The Rate Template Configuration SCrEENccceieiieiiiiiiiiie s 46
The Event Template Configuration SCrEENcccovveieiiiiiiienenereee s 47
NO GENEIAl OPLIONS ...ttt sttt st e e e e be e e srestaenbesre s 48
NO Trial MPS ASSIGNMENTviitieiiiteiie et sre st re et re e e be e e srestaebesreas 48
NO APPIICAtIoN CONLIOLoviiiiiicie e 49
NO Create New Development SCrEENcccvviiiiiieieiesee e 50
NO Copy t0 NeW DeVEIOPMENT........cviiiiiiiie e 50
I L@ N v o T i OSSPSR 51
NO IMPOrt BUSINESS LOGICveiuieiiiieiie et sttt be et sre e te e srestaeaesre s 52
NO Import Configuration Data............ccueiririiiireieieeese e 52
NO SBR DB Name Mapping VIBWccocuiiiiriiieieisise st 53
NO SBR DB Name Mapping INSEIccccuoiiiiiiiieisiee e 54
NO TabIES VIBW SCIEEIN ..ottt sttt st nens 55
NO TabIeS INSEIT SCIEENuiiviieieeieee sttt ettt 56
Provision Table BULTONcoiviiiiice s sne s 57
NO Provision Table VIEW SCIEEN.........cccviieieii et sie s se e sre e seesnes 58
NO Provision Table INSEIT SCrEENcccvcveieiieiece et 58
SO SCIBENS......ee ettt ettt ettt b e s bt e e h bt s bttt b e e bt e b e e b b e nb e e b e be e nre e e 59
SO Application CONLrol SCIEENocueiie et ens 60
SO Tables VIeW SCreen (BMPLY)oovoeiiierieieieiseses st 61
System Options for the Unavailable Operation Statusccccceeevveeieniinieenese e 62
System Options for the Exhausted DRL RESOUICESccccevveveriereeienieseesiesesiesienes 63
System Options for the RUN-TIME EITOr.........coooiiiiieiiieie e 63
System Options for the Realm and FODN ..o 63

DCA Programmer’s Guide, E93198 Revision 01, September 2018 vii

CONFIDENTIAL — ORACLE RESTRICTED

Figure 74: System Options for the Application INVOCAtIONcccccveieiiciiiicere e 64
FIQUIrE 75: LaYOUL SEIUCTUIEecveiieiecie ettt sttt sbe s be s te et e beeneesaeeneenrenre s 65
Figure 76: LayOUL PriNt SCIEENc..iiuiiiieieisii sttt 65
Figure 77: TOOIDOX 8N0 ACHIONS........oiviiiiiicieiereee e 66
Figure 78: Code TeXt EQITOr........cciiiieiiece et resre s 66
Figure 79: IDIH Event Trace of an U-SBR QUEIY..........cccceiiiieiie i se e 103

List of Tables

Table 1: NO/SO GUI AIffErENCES.....cviitiiie ittt sttt seeenes 41
Table 2: NO GUI tables and configuration data accessibility...........ccccovviviiiiiiciiiiicccece e, 55
Table 3: SO GUI tables and Configuration Data Accessibility.........cccccvvveviviiiiiiiiicccece e, 61
TabIE 4: IDIH EVENTS ..ottt sttt ettt nne e eneas 101

DCA Programmer’s Guide, E93198 Revision 01, September 2018 viii

CONFIDENTIAL — ORACLE RESTRICTED

1. Introduction
Diameter Custom Applications (DCA) is a framework that enables a significant reduction of the coding —
testing — deployment — maintenance cycle in the development of Diameter applications.

The present document is intended to developers of DCA Apps. It describes how DCA Apps can be
created, how their business logic and configuration data can be provisioned, how their lifecycle from
development to production can be managed, and the various APIs available.

Following the DCA Framework and DCA Apps activation (Chapter 2), the document is organized around
three DCA Apps examples: Blacklist (Chapter 3), CountULR (Chapter 6), and Rate (Chapter 8), which
demonstrate the basic features of the DCA Framework. A number of additional chapters, interleaved with
the chapters describing the three DCA Apps provide a gradual insight into essential capabilities of the
DCA framework, like the DCA App lifecycle management (Chapter 4), stateful DCA Apps development
mechanisms (Chapter 5) and tools for monitoring the execution of DCA Apps (Chapter 7).

Chapter 9 provides a complete GUI reference, with the Development Environment described in
Chapter 10.

The various APIs available are described in Chapter 11.

1.1 References

[1] CGBU_018429 - DCA Framework and Application Activation and Deactivation
[2] E58954-02, DSR Software Installation and Configuration Procedure

1.2 Glossary

This section lists terms and acronyms specific to this document.

Acronym Description

API Application Programming Interface

ART Application Routing Table

AVP Attribute Value Pair (in context of Diameter protocol)
ComAgent Communication Agent

DA-MP Diameter Agent Message Processor

DAI DSR Application Infrastructure

DAL Diameter Application Layer

DBCA Database Change Agent

DCA Diameter Custom Applications (framework)

DRL Diameter Routing Layer

DSR Diameter Signaling Router

EDL Encode-Decode Library

I-SBR Independent SBR (Session Binding Repository)
JSON Java Script Object Notation

MEAL Measurement, Event and Alarm

MO Managed Object

NOAM Network Operations Administration and Maintenance

DCA Programmer’s Guide, E93198 Revision 01, September 2018 1

CONFIDENTIAL — ORACLE RESTRICTED

Acronym Description

OAM Operations, Administration & Maintenance

OoID Obiject Identifier (SNMP)

Perl Practical Extraction and Reporting Language — a scripting language

PRT Peer Routing Table

SNMP Simple Network Management Protocol

SOAM Site Operations Administration and Maintenance

TTR Trace Transaction Record (in context of IDIH)

U-SBR Universal SBR (Session Binding Repository) — used by DCA apps to store generic
application state data

1.3 Terminology

Acronym Description

A-Level NOAM —level

Asynchronous | Symbol in the Development Environment that represents a code statement that calls an

Call Symbol | asynchronous function provided by the DCA Perl API. The code statement occurs
within a preceding Execution Block. The symbol displays the name of an
asynchronous function that is invoked.

B-Level SOAM- level

DCE Web application where a custom Diameter application developer can edit, save, check

Development
Environment

syntax, compile the application code for a Diameter Custom Application, and generate
an Interactive Flow Control Chart from the application code.

Execution Symbol in the Development Environment that corresponds to an application subroutine

Block Symbol | where the name of the symbol is also the name of the subroutine.

Internal A storage mechanism that allows persistence during a Diameter transaction lifetime.

Variable

Start Symbol | Symbol in the Development Environment that marks the start of execution for the
application.

Termination Symbol in the Development Environment that represents the end of the application’s

Symbol execution.

1.4 WARNING on Copy and Pasting Code from this Guide

Please note that when copy and pasting code from Microsoft Word or other editors or document viewers
into the Development Environment editor, some characters (typically punctuation characters like quotes)
may end up having non-ASCII character codes, which leads to compilation errors. For instance:

Checking syntax...
Unrecognized character \x<..> in column <..> at script file line <.>.

Check Syntax found errors. Correct the syntax errors and try again

The solution is to delete the copy and pasted punctuation character and re-type it in the Development
Environment editor.

DCA Programmer’s Guide, E93198 Revision 01, September 2018

CONFIDENTIAL — ORACLE RESTRICTED

2. DCA Activation and Deactivation

Activation and deactivation are standard procedures that enable the DSR applications in general and DCA
Apps in particular to be installed and uninstalled on a network.

2.1 DCA Activation

To start developing a new DCA App, perform the following two steps:

1. Activate the DCA framework on the NO. See Procedure 5 in [1] CGBU_018429 - DCA Framework
and Application Activation and Deactivation for the instructions.

This step needs to be performed only once for a given network.

2. Activate the new DCA App on the NO. See Procedure 6 in [1] CGBU_018429 - DCA Framework
and Application Activation and Deactivation for the instructions.

Perform this step once per DCA App (similar to native DSR applications). Note, however, that only a
limited number of DCA Apps (currently 5) can be simultaneously activated. Therefore, deactivate
old DCA Apps to make room for new DCA Apps.

Figure 1 provides an overview of the activation-deactivation lifecycle.

Activate DCA Activate DCA
Framework Application

: As many :
| instances of this |
! process as many |

N
DCA apps |~ N

Activated, not yet
provisioned DCA App(no
versions, operational state
»Unavailable")

|
| ; -
| are activated in | . Create New /’/‘

~ .
! the network ! ~ Version, Import) .
e (Business Logic) Create New Version,

|
|

Copy From Existing |

Version, Import, |

Export, Make Trial,

Make Production, |
|
|
|

Activated and
provisioned DCA
App (1+ versions in
»Development”,
#Trial”, ,Production”,
LArchived” states)

Make Development,
Delete

Deactivate DCA Deactivate DCA
Framework Application

== —————

Figure 1: DCA Activation- Deactivation Lifecycle

DCA Programmer’s Guide, E93198 Revision 01, September 2018 3

CONFIDENTIAL — ORACLE RESTRICTED

2.1.1 DCA Framework Activation

When the DCA framework is initialized, the DCA Framework folder with the Configuration file becomes
visible in the left side menu (Figure 2).

£, Main Menu

E1 B Administration
£ M Configuration
g @ Alarms & Events
G
-~
]

curity Log

g1 s Communication Agent
H B Diameter Common

H | Diameter

B @ RADIUS

B &

- B Configuration

Figure 2: DCA Framework Menu

All the measurements (Figure 3) and KPIs (Figure 4) associated with the DCA Framework become
visible as well.

Main Menu: Measurements -> Report

Fiter - Inffo -

Tasks -

Filter

SETTE I Network Element - IZ| I- Server Group - IZ| Reset |

Report: I DCA Framework Exception

- Group -

ComAgent Exception
ComAgent Performance

|Z| I-- Interval -- |Z| Reset |

I Reset

Time Range: -
" 201 Jan 01 0o 0o Reset

DCA Framework Exception I ’ I I I

DCA Framework Performance

IDH

OAM.ALARM

OAM.5YSTEM

Server Exception

Figure 3: DCA Measurements
Main Menu: Status & Manage -> KPIs &+
Tue May 03 06:37:40 2016 |

Entire-Network Gremlin-DAMP-1 Gremlin-DAMP-2 Gremlin-DAMP-3 Gremlin-DAMP-4 Gremlin-NO-A Gremlin-NO-B Gremlin-501-A Gremlin-501-B Gremlin-802-A
ComAgent DCA Framework Server
Name Max Min Median Average Sum Description
Ingress Message Average Ingress Message Rate (messages per second) of Diameter messages
Rate WEy Loy LI WEy ey received by the DCA Application
Runtime Errors Rate 0.00 0.00 0.00 0.00 0.00 :ztset:r;;{umime Error Rate (runtime errors per second during the last sampling
Completed 0.00 0.00 0.00 0.00 0.00 Diameter transactions that a DCA App successfully relays
Transactions
Transactions Discard 0.00 0.00 0.00 0.00 0.00 Allows the operator to determine how many transactions a DCA app relay terminates by

Request

Figure 4: DCA KPIs

discarding the request (by comparison with the Completed Transactions).

DCA Programmer’s Guide, E93198 Revision 01, September 2018

CONFIDENTIAL — ORACLE RESTRICTED

2.1.2 DCA App Activation

When the new DCA App is activated, the DCA App subfolder with the name provided by the user during
the activation procedure becomes visible in the left side menu (Figure 5). The DCA App subfolder
includes the screens for enabling the business logic and provisioning configuration data. The DCA App
becomes visible across DSR (ART, maintenance screen, etc.).
[=] ‘-3 DCAFramework
[z| Configuration
=] 3 KKtestapp
(] Custom MEALs
[£] General Options
(] Trial MP= assignment
(] Application Control
[z| System Options
[+ [TestApp5

Figure 5: DCA Application Menu

2.1.3 Post-Activation DCA App State

Following the activation procedure, the DCA App is in the disabled state. While in the disabled state,
Diameter traffic is not delivered to the DCA App. First, enable the DCA App from the SO Main Menu:
Diameter->Maintenance—>Applications. Note that on this screen the DCA App is identified by the
short name configured by the user during the DCA App activation procedure.

Independently from the enabled/disabled state of the DCA App, at this stage no version of the DCA App
has been provisioned yet. As a result, there is no version in Production and Trial state. As long as no
Production or Trial version is available for a DA-MP to run, the DCA App‘s operational status is
Unavailable (see Main Menu: Diameter-> Maintenance-> Applications on the SO).

The behavior of a DCA App while in Unavailable operational state (provided that the DCA App has been
enabled) is configurable on the SO from the Main Menu: DCA Framework-><DCA App
Name>->System Options (see Section 9.4); possible options are dropping the Diameter request,
forwarding the Diameter request, or returning a Diameter answer with a configurable error code.

From this point on the user can provision the configuration and business logic for the DCA App.

2.2 DCA Deactivation

The deactivation procedures enable a DCA App and, respectively, the DCA framework to be removed
from a given network.

2.2.1 DCA Application De-Activation

The deactivation of a DCA App is not allowed as long as versions of the respective DCA App are still in
Production and/or a Trial state (see Chapter 4).

Following deactivation, the DCA App‘s GUI folder under the DCA Framework menu item disappears.
The DCA App is deregistered from the ART; its KPIs and measurements do not display or report any
longer.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 5

CONFIDENTIAL — ORACLE RESTRICTED

2.2.2 DCA Framework De-Activation
DCA framework deactivation is not allowed as long as at least one DCA App is activated in the network.

Following deactivation, the DCA framework GUI folder disappears from the left-hand GUI menu.

3. DCA App Provisioning — The Blacklist DCA App

This section is a tutorial to provision the configuration data and business logic for a simple DCA App.

3.1 The Blacklist DCA App

The Blacklist DCA App checks the Origin-Host AVP of incoming Diameter requests and verifies whether
it is blacklisted or not. In case the Origin-Host is blacklisted, the Diameter request is dropped, otherwise,
the Diameter request is forwarded unchanged.

3.2 Prerequisites

The DCA Framework must have been previously activated as described in [1] CGBU_018429 - DCA
Framework and Application Activation and Deactivation. Also, a DCA App with the name Blacklist is
activated as described in [1] CGBU_018429 - DCA Framework and Application Activation and
Deactivation.

The Blacklist DCA App has to be enabled on all the DA-MPs in the network from the SO Main Menu:
Diameter->Maintenance—> Applications.

An ART rule is added that enables Diameter messages to be delivered to the Blacklist DCA App.

3.3 The Process

The following step must be followed to provision the Blacklist DCA App:

Step 1: Configure the general options and behavior of the Blacklist DCA App.

Step 2: Create a new development version of the Blacklist DCA App.

Step 3: Define the structure of tables to store the Blacklist configuration data.

Step 4: Provision the Blacklist configuration data.

Step 5: Provision the Blacklist business logic — essentially a Perl script.

Step 6: Render the Flow Control Chart based on the Perl script. Save and perform syntax checks.
Step 7: Test the Blacklist DCA App: configure the Trial DA-MPs and promote Blacklist to Trial state.

Step 8: Compile Blacklist, promote Blacklist to Production state.

3.3.1 Step 1: Configure the DCA App's General Options and Behavior

At this stage, there is no version available for the Blacklist DCA App. As a result, the DCA App is in the
Unavailable operational state. No traffic is forwarded to the Blacklist DCA App and, for outside
observers, the DCA App behaves as specified in the SO screen Main Menu: DCA Framework=><DCA
App Name>->System Options, Application unavailable configuration section (see also Section 9.4).

The Run-time error configuration section of the same screen defines the behavior of the DCA App in
case a runtime error occurs during the execution of the event handlers.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 6

CONFIDENTIAL — ORACLE RESTRICTED

Finally, the DCA App programmer must ensure the names specified on the NO screen Main Menu: DCA
Framework-><DCA App Name>->General Options (see Section 9.2.3) for the Diameter request and
answer event handlers (Perl subroutines) are consistently used in the Perl script.

For Blacklist in particular, Perl Subroutine for Diameter Answer is left empty because there is no event
handler defined to process the Diameter answers.

3.3.2 Step 2: Create New Development Application Version

Go to the Main Menu: DCA Framework-><DCA App Name>->Application Control screen on the
NO and click Create New Development (see Figure 6). The Create New Development screen displays.
Specify a name for the newly created Blacklist version and optionally provide comments (e.g., author
name, brief description of the business logic, etc.). Figure 7 shows the newly created version.

Main Menu: DCA Framework -> Test DCA Application -> Application Control

Verskon Name Status Commenis Creation Tame Production Time Flowchart Checksum Schema Checksum

= Impom

Business Logic
Create Mew Development Dy o N pment)
&| Export

Figure 6: Create a New Application Version

Main Menu: DCA Framework -> Test DCA Application -> Application Control

Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checksum
BlackList {Development 2016-May-11 06:46:47 EDT
Config Tables and Data Development Environment SBR DB Name Mapping » Import
Business Logic ALevel Config Data
Create New Development Copy to New Development b
% Export
Delete Business Logic Alevel ConfigData Both

Figure 7: New Application Version Created

DCA Programmer’s Guide, E93198 Revision 01, September 2018 7

CONFIDENTIAL — ORACLE RESTRICTED

3.3.3 Step 3: Define the

Configuration Data Structure

Select the newly created development application version on the Application Control screen and click
Config Tables and Data. The Tables screen (Figure 8) displays. Click Insert on the Tables screen and
create a new configuration table for provisioning the blacklist. The Blacklist DCA App configuration
table contains only one field: OriginHost, which is of type Diameterldentity, see Figure 8).

Main Menu: DCA Framework -> Test DCA Application -> Application Control -> Blacklist -> Tables -> [Insert]

Adding a new table
Field Value

Table Name |BlackList g

Description
Single Row
oNO
I
Level S0
Table Fields *
Field Name Engmuoﬁ)
Description
Unique
Mandatory

Data Type Diameteridentity ~ *

Default Value

Remove |

Description

Unique name of the Table.

[Default = n/a; Range = A 32-character string.

Valid are and Must contain at least one alpha and must not start with a digit]

Optional Description.
[Default = n/a. Range = A 255 charadler string]

Indicates If the table must have one single row,
[Default=Unchecked Range= Checked, Unchecked]

Configuration level of the table (NO or SO).
[Detauit=NO. Range=NO, S0}

Unique name of the Table Field
[Default = n/a; Range = A 32-character skring. Valid are and Must contain at least one alpha and must not start with a digit]

Optional description.
[Default = nfa. Range = A 255 character string)

Indicates if the table field must be unique.

[Defaut=Unchecked Range=Checked, Unchecked]

Indicates if the table field must be mandatory.

[Default=Unchecked Range=Checked. Unchecked]

Data Type

[Default=n/a. Range= Integer, Float, UTF8String. OctetString, IP Address, DiameterURI Diameteridentity, Enumerated, Boolean)

« Integer. Unsigned54/Signedts

« Float: [+/jnumber{ numberfe/E{+/-Inumber]. for example 12.3 or 1.23e+1

« UTF8String

« OctetString: hexadecimal value prefixed with 0x

« IP Address: IPv4 (decimal numbers separated by a perlod) APvS (RFC4291, section 2.2; form 1 and 2 are supported)
« DiameterURL “aaau” FQDN [port] [transport] { protocol J"aaas ™ FQDN [port][transport) [protocol J, see RFC6733
« Diameteridentity: FQDN or Realm see RFC6733

« Enumerated: Comma separated st of values, which can be separate items (3,b.c) or in form of : (a:1,0:2.c:3).

« Boolean: trueffaise

Default Vaiue.
[Defauit=n/a. Range= FQDN or Realm,see RFC6733]

Ok | | Apply | | Cancel

Figure 8: Create a New Database

Note: In this example, the configuration table is defined at the NO level. That means the configuration
table is replicated to all the DA-MPs in the network.

Alternatively, a configuration table may be defined at the SO level. That means, while its
structure is defined across the entire NO, its content is replicated only to the DA-MPs in each
individual SO. In this way distinct SOs may use different configuration data (see Section 9.3.5).

DCA Programmer’s Guide, E93198 Revision 01, September 2018

CONFIDENTIAL — ORACLE RESTRICTED

3.3.4 Step 4: Provision the Configuration Data

Once the structure of the Blacklist table is defined, the table displays on the Tables screen. Select it and
click Provision Table. The Provision Table View screen displays (Figure 9). Click Insert on the
Provision Table View screen and insert all the Blacklisted Origin-Hosts to the table one by one

(Figure 10).

Main Menu: DCA Framework -> DCA Test Application -> Application Control -> BlackList ->Provision Table

Table: BlackList

OriginHost

Edit | Delete Delete All Back

Main Menu: DCA Framework -> DCA Test Application -> Application Control -> BlackList -> Provision Table ->[Insert]

Figure 9: Provision Table BlackList

Adding a new entry
Table: BlackList

Field Value Description

OriginHost
Ok Apply Cancel

Figure 10: Insert a New Data Row to the BlackList Table

Main Menu: DCA Framework -> DCA Test Application -> Application Control -> BlackList -> Provision Table

Table: BlackList

OriginHost

mme-1.test.com
mme2.test.com
mme3.test.com
mmed test.com

mmeb5.test.com

Insert Edit Delete Delete All Back

Figure 11: Provision DCA DB Tables

DCA Programmer’s Guide, E93198 Revision 01, September 2018

CONFIDENTIAL — ORACLE RESTRICTED

3.3.5 Step 5: Provision the Business Logic

Go back to the Application Control screen, select the application version, and click Development
Environment.

In the development environment, you can edit, save, check syntax, and compile the DCA App's Perl code,
which defines the business logic the DCA App implements. An interactive Flow Control Chart is also
rendered based the DCA App's Perl script. The Flow Control Chart provides an overview of the control
flow within the DCA App and is useful in following the asynchronous calls and indicating the terminating
actions (forward, drop, or return answer). See Chapter 10 for more details on Development Environment.

The development environment of the Blacklist DCA App is illustrated in Figure 12.

» VEersion statu
ORACLG DCA Development Environment [DCA Test Application, BlackList]

- 100%
E < 2AaVvi Q@ Q File v Edt v ExecBlocks ~ Fit Resize
=4 Start request sub process request |
my $param = shift;
my $msg = diametex::Param::message ($pazam) ;
0 ’ die "Missing Dizmeter me, unless defined ($diametexMsg),
my $originHost = diameter::Message::getAvpValue {$mag, "Origin-Host");
¢ die "Missing Origin-Host" unless defined($originHost);
i sBlacklisted ($originHosst)) {
zzdn V
process_request ion () rop ()
- —
—
> —
5] my $blacklist = $dca::appConfig{"BlackList"};
my $i = 0;
= sBlackiisted arop v(:hllz ($i <= $#{$blacklist})
return 1 if sblacklist->[$i]{"OriginHost"} eqg $originHost;
v I= O $ith;
] }

return 0;

}
Start answer

>

Figure 12: The Blacklist DCA App Development Environment

First, the DCA App programmer has to write in the right-hand panel the Perl code illustrated in Figure 13.
The left-hand panel containing the flowchart is empty until the flowchart is rendered in Step 6.
sub process request ({
my $param = shift;
my S$msg = diameter::Param::message ($param) ;
die "Missing Diameter message" unless defined ($msg);
my SoriginHost = diameter::Message::getAvpValue (Smsg, "Origin-Host");
die "Missing Origin-Host" unless defined($originHost);
if (isBlacklisted ($originHost)) {
dca::action::drop();
} else {
dca::action::forward() ;

}
sub isBlacklisted {
my SoriginHost = shift;
my S$blacklist = $dca::appConfig{"BlackList"};
my $i = 0;
while ($i <= S$#{$blacklist}) {
return 1 if S$blacklist->[$i]{"OriginHost"} eq S$SoriginHost;
Sit++;
}

return 0;

Figure 13: Blacklist Perl Code

DCA Programmer’s Guide, E93198 Revision 01, September 2018 10

CONFIDENTIAL — ORACLE RESTRICTED

The Perl script (see Figure 13) makes use of the getavpvalue function to read the value of an AVP.
The getavpvalue function is part of the EDL API, which is described in Section 11.1.2. It also uses the
drop and forward functions to discard and respectively forward the Diameter request. The drop
function is part of the basic routing API, which is described in Section 11.4.

3.3.5.1 Where is the Perl Script Being Executed?

Although the Perl script is edited using the NO GUI, the Perl script is replicated to and eventually
executed on the DA-MPs. In other words, there is no possibility of making the Perl script process traffic
other than running it on the DA-MPs.

3.3.5.2 How Do the Event Handlers Get Invoked?

The business logic of a DCA App consists of a collection of event handlers, which are invoked when a
Diameter message is delivered to the respective DCA App. A DCA App may therefore define one event
handler for Diameter requests and one event handler for Diameter answers. Subsequent sections
introduce another category of event handlers, related to asynchronous database queries, but let’s stick to
the Blacklist DCA App for now. Blacklist defines only one event handler: process request. Unlike
isBlacklisted, which is a standard Perl subroutine invoked from process request,
process_request itself is not explicitly invoked from anywhere in the Perl script. The event handlers
are explicitly invoked by the Perl running environment of the DCA framework. Their names are
configured in the NO Main Menu->DCA Framework->< Application Name>->General Options
screen and by default these names are process request and process_answer. These names may be
changed, but one needs to make sure that the configured event handler names are consistent with the
names used in the Perl script. Also, the event handler names are left empty if there is no corresponding
event handler defined in the Perl script (see Figure 14).

Main Menu: DCA Framework ->Test DCA Application -> General Options

DCA Application General Options

Field Value Description

The name ofthe Perl subroutine to be invoked when a Diameter request is received
Perl Subroutine for Diameter Request process_request S [Default = process_request. Range = A 255 character string
Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit]

The name of the Perl subroutine to be invoked when a Diameter answer is received
Perl Subroutine for Diameter Answer [Default = process_answer. Range = A 255 character string
Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit]

The TTL of the application state data stored in the U-SBR by the DCA App, in seconds.
[Default = 120]

Figure 14: Event Handler Subroutine Name Configuration
3.3.5.3 How Does the DCA App Configuration Data Get Accessed?

The configuration data of a DCA App is accessible to the Perl script through the $dca: :appConfig
variable, which is a complex variable representing a hash of arrays of hashes. One has to dereference it
with exactly the same table names and field names specified when the structure of the configuration tables
has been defined in step 3.3.3:

State TTL 120

$dca::appConfig{“<table name>"}->[<record number>]{“<field name>"}
in our case:

$dca::appConfig{“BlackList”}—>[<record_number>]{“OriginHost”}

DCA Programmer’s Guide, E93198 Revision 01, September 2018 11

CONFIDENTIAL — ORACLE RESTRICTED

3.3.5.4 What is the Main Part Good For?

Blacklist has an empty Main Part. The Main Part of a Perl script is where the Perl interpreter starts
executing instructions. In DCA, the main part is executed only once following the successfully

compilation of the script.

The Main Part is typically used to perform whatever initializations are necessary (like for instance
Custom MEAL objects, as we describe later on).

Another task that fits into the Main Part is DCA App configuration data post-processing. We have seen
in Section 3.3.5.3 that the Blacklist configuration data is accessible to the business logic (Perl script) as an
array. Blacklist simply loops through the array when looking for each Origin-Host, but a more
performance—aware version would certainly convert the array into a more performant data structure, like
for instance a hash table keyed by the Origin-Host values.

Other DCA apps may even need to use multiple keys (hence multiple hash tables) or compound keys; the
Main Part is the right place to perform this kind of structural optimizations on the DCA App

configuration data.

3.3.6 Step 6: Render Flow Control Chart, Save Script, Check Syntax
After editing the script, while in the Development state, the following actions are possible (see Figure 15):

e Render Chart (to generate the flowchart from the Perl code);
e Save (to save the Perl code and the flowchart);
e Check Syntax (to check syntax of Perl script).

E

—_—
=

¢ > A v a aq

Render Chart
/fE Render Code

- Save
a .--""-.-.- . P o e OIS =T
— Check Syntax
e _______-"'F
% Compile
— isBlacklisted
1
|
]
I=

Figure 15: Development Environment Buttons

110%

C

DCA Programmer’s Guide, E93198 Revision 01, September 2018

12

CONFIDENTIAL — ORACLE RESTRICTED

The Render Chart action generates a flowchart based on the Perl code. Note that the flowchart has a
Perl subroutine granularity and not a Perl instruction granularity. The flowchart's main purposes are: (i)
to describe how the callback subroutines are linked to the event handlers (Diameter message handlers or
other callback subroutines) that registers them and (ii) to indicate the terminating actions (drop, forward
or return answer).

The flowchart does not illustrate on which condition a Perl subroutine is invoked (i.e., if conditions) or
how many times a Perl subroutine is invoked (i.e., loop conditions). Also, the Render Chart action is
explicitly triggered by clicking the corresponding button after each modification of the Perl script.

Save allows the flowchart and Perl code to be saved, while the DCA App version is in Development or
Trial state.

Check Syntax becomes enabled once the Save action has been completed, while the DCA App version is
in Development or Trial state. It performs a syntax check on the Perl code and displays the errors if the
syntax check fails.

3.3.7 Step 7: Test the DCA App Version

Having the configuration data and business logic provisioned, it is now time to test the Blacklist DCA
App.

A DCA App version is tested by promoting it to the Trial state, which automatically results in running it
on the dedicated Trial DA-MPs.

The first step is, therefore, to configure the Trial DA-MPs, which can be done from the Trial MPs
Assignment screen (see Figure 16 and Section 9.2.4).

The Trial DA-MPs assignment is configured per DCA App, that is, it needs not be repeated for each DCA
App version.

Note also that our network contains only one DA-MP, which is also a Trial DA-MP. However, in a real
life deployment, there would typically be a few Trial DA-MPs and a number of non-Trial DA-MPs.

Main Menu: DCA Framework -> Test DCA Application -> Trial MPs assignment

Trial MP assignment

RDUO3-MP1

|@||Cancel‘
Figure 16: Trial MP Assignment

Next, on the Application Control screen, promote the DCA App version from Development to Trial state
by selecting it and clicking Make Trial.

While in Trial state the DCA App version can be: modified, saved, have the syntax checked and, in
addition to the Development state, it can also be compiled (by clicking Compile, see Figure 15), as
further described in Chapter 4. During each new cycle starting with the first Perl code modification and
lasting until the next successful compilation (with an arbitrarily number of modifications, save and syntax
check actions taking place during this time), the Trial DA-MPs execute the previously successfully
compiled Perl script of the respective DCA App version.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 13

CONFIDENTIAL — ORACLE RESTRICTED

If successfully compiled, the Blacklist DCA App on the Trial DA-MP switches into the operational state
Auvailable (see the SO Main Menu: Diameter->Maintenance-> Applications screen). On the non-Trial
DA-MPs the DCA App operational state remains Unavailable because there is no DCA App version in
Production state at this moment.

3.3.8 Step 8: Promote the DCA App Version to Production State

A successfully compiled Trial DCA App version can be promoted to the Production state. For this
purpose, on the Application Control screen, select the DCA App version and click Make Production.

At this stage the only DCA App version available so far is in Production state. All non-Trial DA-MPs
start running it and on these DA-MPs, the DCA App operational state becomes Available. Because there
is no DCA App version in the Trial state, the Trial DA-MPs run the Production version as well.

Please note that our network is a very particular case that contains one single DA-MP, which is
configured as a Trial DA-MP. This means that the Production version is executed on only this DA-MP if
and only if no Trial version exists. As soon as a (new) Development version is promoted to the Trial
state, the Trial DA-MP stops executing the Production version and starts executing the (new) Trial
version.

While in Production state, the business logic of the DCA App version cannot be changed anymore. It is
only the configuration data that can be updated.

We have achieved our initial objective of running the Blacklist DCA App in our network. From this point
on a number of alternatives are possible:

e Demote the DCA App version from Production state back to Development to fix bugs, re- test and
promote back to Production state.

e Copy the DCA App version into a new version with the purpose to improve its business logic (in
terms of efficiency, functionality, or both) and eventually promote the newer version to Production
state.

e Export the DCA App version from the current network and import it onto another network.

We are touching on the DCA App lifecycle management topic, which is described in more detail in the
next chapter.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 14

CONFIDENTIAL — ORACLE RESTRICTED

4. DCA Application Lifecycle

The DCA Application Lifecycle enables the DCA App programmer to manage the lifecycle of a DCA
App.

So far we have developed one single DCA App version, we tested it and promoted to the Production state.
The state transitions are illustrated in Figure 17.

1.

2.
Import Flowchart/script Edit: Flowchart/Script,
& Config Schema, Config Schema,
Create New Version Config Data

Import: Config Data

Archived Development
3.
Promote to Trial

4.

6. Edit: Flowchart/Script,
Edit/Import Config Schema,
Config Data Config Data

Y Import: Config Data
Production _ Trial D/
5b.

Promote to Production

Figure 17: Transitions from Development to Production State

In a real life deployment, a DCA App may need to be continuously enhanced both in terms of efficiency
as well as features. A typical approach would be to clone the DCA App version currently in Production
state to a new version in Development state, work on the new version (while the old version is processing
the Diameter traffic), test the new version and eventually replace the older version in Production state
with the newer one. This process is illustrated by the transition path 7->3->5b->9 in Figure 18.

Archived
Development

9.
Current 7. 3
Production Copy to a New Promote to Trial
version is Development i i i
. X | If a Trial version already exists, an
automatically Version error message will be displayed.

Archived when a
new version is
promoted to
Production.
An info message
will be displayed

The user has to pull back the
existing Trial version to
Development state, before another
Development version can be
promoted to Trial

L\,

Production _ Trial

Sh.
Promote to Production

Figure 18: Creating a New DCA App Version

DCA Programmer’s Guide, E93198 Revision 01, September 2018 15

CONFIDENTIAL — ORACLE RESTRICTED

The DCA App Lifecycle management is done via the Main Menu: DCA Framework-><DCA App
Name>->Application Control screen.

Each DCA app version can be in one of the following states:

e Development (initial state)
e There are zero or more Development versions in the system.
e Development version is not executed on any MP.
e Configuration schema (databases), configuration data, flowchart may be updated.
e Anew version in Development state is created in the system when:

e Create New Development is clicked, see Section 9.2.5. In this case, the version has an
empty flowchart, empty configuration schema, and empty configuration data.

e Importing the business logic (with or without configuration data), see Section 9.2.9. In this
case the flowchart and the configuration schema (databases) is copied from the imported
version. Optionally, configuration data may be imported along with the business logic as
well.

e Copying a new Development version from an existing version in the system, see
Section 9.2.7. In this case, the business logic and the configuration data of the selected
version are copied into the new version.

e Trial

There are zero or one Trial versions in the system.

Trial version is executed on the DA-MPs assigned to run the Trial version

If no Trial version exists, then the Trial MPs runs the Production version (see Figure 19).
Configuration schema (databases), configuration data, flowchart may be updated.

e Production

e There is zero or one Production version in the system.

e When no Production version exists in the system, the operational state of the DCA application on
MPs supposed to run the Production version is set to Unavailable (Main Menu:
Diameter->Maintenance-> Applications). This may happen if the Production version is rolled
back to the Development state or deleted.

e Isexecuted:
o On all the DA-MPs, if no Trial version exists, or
e On all the DA-MPs except the DA-MPs assigned to run the Trial version, if a Trial version
exists (see Figure 19).
o Configuration schema (databases) & Flowchart are read-only.
e Configuration data may be updated.
e Archived
e There are zero or more Archived versions in the system.

e Archived versions are the application versions that have previously been in the Production state.
They serve as backups for bringing the system back to a previous known state with minimum
service interruption.

e Archived version is not executed on any MP.

e Configuration schema (databases), Configuration Data and Flowchart are read-only, but can be
exported and copied into a new version.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 16

CONFIDENTIAL — ORACLE RESTRICTED

MP decides which
version to run

Trial

Version Exists
?

\ J

<Run Trial version>
Y
Run Production
version
Operational state is
,unavailable”

Figure 19: Assignment of the Version to a DA-MP

Version Exists
?

The following transitions are possible for a given DCA App version:

5.

Development = Trial (only if syntax was successfully checked and no other version is in Trial state)

Trial = Production (only if the code/flow control chart was successfully compiled and no other
version is in Production state)

Production - Archived (automatic transition when a new version is promoted to Production)
Trial > Development

Production - Development (the operational state of the DCA App becomes Unavailable)
Archived - Development

Archived - Trial

Archived - Production

Developing Stateful DCA Apps

The Blacklist DCA App introduced in Chapter 3 was a stateless Diameter application because it was
processing each Diameter message individually without maintaining any state between a Diameter request
and its corresponding answer (Diameter transaction state) or across Diameter transactions (e.g., Diameter
session state) or across Diameter sessions (e.g., user state).

DCA Apps may, however, need to store state:

1.

Diameter transaction state — for instance collect some information from the Diameter request and use
that information when processing the Diameter answer.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 17

CONFIDENTIAL — ORACLE RESTRICTED

This task can be addressed in two ways:
a. Using the Diameter transaction context variables APl documented in Section 11.2.2.

b. Developers familiar with the Internal Variables from the Mediation feature may use Internal
Variables for this purpose, as described in Section 11.2.1. However, Internal Variables involve a
configuration overhead and therefore unless there is a strong argument in favor of using them
(e.g., they need to be set or read from Mediation rules) the Diameter transaction context variables,
being a purely programming interface, are preferable

2. Diameter session or user state — for instance collect information across multiple Diameter transactions
in the same session or user information across multiple Diameter sessions.

This task can be addressed using the Universal Session Binding Repository (U-SBR) and is described
in Section 11.7.

6. A Stateful DCA App Using the U-SBR Infrastructure

In Chapter 3 we developed a stateless DCA App. Chapter 5 introduces the mechanisms available in DCA
to develop stateful DCA Apps.

This chapter describes the additional configuration steps to perform, and introduces the API available to
develop a stateful DCA App that uses the U-SBR (Universal Session Binding Repository). The U-SBR
provides a generic interface to the I-SBR (Independent Session Binding Repository), which implements a
scalable, distributed, and persistent database infrastructure, which DCA Apps and other Oracle
applications may use.

6.1 The CountULR DCA App

The CountULR DCA App maintains a per-user count of ULR messages and deletes it when a CLR
message from the respective user is received. The user is identified based on the content of the
User-Name AVP in the incoming Diameter requests.

6.2 Prerequisites

The DCA framework must have been previously activated as described in [1] CGBU_018429 - DCA
Framework and Application Activation and Deactivation. Also, a DCA App with the name CountULR is
activated as described in [1] CGBU_018429 - DCA Framework and Application Activation and
Deactivation.

The CountULR DCA App has to be enabled on all the DA-MPs in the network from the SO Main Menu:
Diameter->Maintenance—> Applications.

An ART rule is added that enables ULR and CLR Diameter requests to be delivered to the CountULR
DCA App.

6.3 The Process
The following steps must be followed to provision the CountULR DCA App:

Business Logic and Configuration Data Provisioning U-SBR DB Configuration

Step 1: Configure the general options and behavior of the CountULR Step A: Configure one or more U-SBR
DCA App. DBs (as required by the DCA App

Step 2: Create a new development version of the CountULR DCA App. | business logic).

DCA Programmer’s Guide, E93198 Revision 01, September 2018 18

CONFIDENTIAL — ORACLE RESTRICTED

Business Logic and Configuration Data Provisioning U-SBR DB Configuration
Step 3: Define the structure of tables to store the CountULR Step B: Configure a logical-to-physical
configuration data. U-SBR DB mapping

Step 4: Provision the CountULR configuration data.

Step 5: Provision the CountULR business logic — essentially a Perl
script.

Step 6: Render the Flow Control Chart based on the Perl script. Save
and perform syntax checks.

Step 7: Test the CountULR DCA App: configure the Trial DA-MPs and promote CountULR to Trial state.
Step 8: Compile CountULR, promote CountULR to Production state.

Steps 1 to 8 are similar to those described in Chapter 3.

Steps A and B are required to create an U-SBR DB and allow the CountULR DCA App to interact with it.
U-SBR DB configuration is independent from the DCA App configuration, except that a relative ordering
must be followed:

Step A may be executed in any order relative to steps 1 and 2.

Step B must follow step 2 because a logical-to-physical mapping is always associated with a DCA
App version.

Step B may be executed in any order relative to steps 3 to 6;
Step 7 must follow step B.

A valid execution sequence is: Steps 1,2>A->3,4,5,6>B->7, 8.

6.3.1 Step 1: Configure the DCA App's Global Options and Behavior

In addition to the considerations discussed in Section 3.3.1, for DCA Apps that use U-SBR, the following
configuration options may need to be adjusted:

On the NO screen Main Menu: DCA Framework—><DCA App Name>->General Options (see
Section 9.2.3):

e Application State Data TTL, which defines the time interval after which the state data is
considered expired and is deleted by the U-SBR audit mechanism. The lifetime of the state data
is initialized to TTL when created and is then automatically extended with the TTL value each
time the state data is updated. The lifetime of the state data depends on the business logic that the
DCA App implements and as a rule of thumb, it is twice the expected validity period of the state
data stored. For instance, if a DCA App is supposed to reject, under some specific circumstances,
an user's Diameter requests for a certain time interval, then the double of this time interval would
be a good value for the state data lifetime

o Read-Only U-SBR Access as Guest, which may be used to control the access of the DCA App to
U-SBR DBs owned by other DCA Apps. This option is not relevant to CountULR because
CountULR exclusively uses the U-SBR DB owned by itself (see Section 6.3.3.5)

It is recommended the state data size (consisting of the size of the lookup key and respectively the
size of the state data itself) of any new DCA App to be kept below the default values configured on
the NO Main Menu: DCA Framework->Configuration screen (see Section 9.2.1). If, for good
reasons, a DCA App requires a larger lookup key or more data to store, then these limits are
increased.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 19

CONFIDENTIAL — ORACLE RESTRICTED

Note that these limits apply globally to all active DCA Apps. As a result, decreasing these value may
result in existing DCA Apps having their U-SBR queries rejected with a
dca::sbr::ResultCode: :MaxStateSize error, and is, therefore, not recommended.

6.3.2 Step 2: Create a New Development Version
See Section 3.3.2.

6.3.3 Step A: Configure the U-SBR DBs
Configuring a U-SBR DB must be preceded by configuring the underlying 1-SBR topology:

e Configure the I-SBR topology

e Step A.1: Servers Configuration

e Step A.2: Server Groups Configuration

e Step A.3: Places Configuration

e Step A.4: Place Associations Configuration

e Step A.5: Resource Domains Configuration
e Configure the U-SBR DB

e Step A.6: U-SBR Database Configuration

The configuration of the I-SBR topology and SBR Databases is also described in more detail in [2]
E58954-02, DSR Software Installation and Configuration Procedure.

S

s ™
' Y
@ : ™
SBRRD1 (Resource Domain) DCAPAL
SBRSG 1 (Server Group) it (Place Association)
H
H
¢ Site 1
! H (Place)

!

DCASBR1 :

O DCARD1 (Resource Domain) A

MPSG (Server Group)

DCAMP1

\. J

Figure 20: SBR Topology Example
The CountULR DCA App uses a simple I-SBR topology, illustrated in Figure 20.

The topology consists of a DA-MP (DCAMP1), which processes the Diameter messages; a SBR-MP
(DCASBR1), which stores the U-SBR DB (USBRDB1); and a NO and a SO.

Next, we have:

e One server per each server group (DCAMP1 in MPSG and DCASBR1 in SBRSG1)

DCA Programmer’s Guide, E93198 Revision 01, September 2018 20

CONFIDENTIAL — ORACLE RESTRICTED

e One server group per resource domain (MPSG in DCARD1 and SBRSGL1 in SBRRD1)
e Both resource domains are in the same place (Sitel)

e The Place Association (DCAPAL) includes just one Place (Sitel)

6.3.3.1 Step A.1: Servers Configuration

Servers are the processing units of the application with various roles within the application: Network
OAM&P (NOAMP), System OAM (SOAM), and MP. For our case, we would need to configure two

MPs — one for the DA-MP that processes the Diameter messages and one for the SBR-MP.

On the Servers screen, configure the SBR MP DCASBR1 with the MP Role and the DA-MP DCAMP1,

see Figure 21.

Fri May 20 07:11:01

INTERNALXMI: 10.240.90.238
INTERNALIMI: 169.254.6.57

INTERNALXML: 10.240.90.242
INTERNALIMI: 169.254.5.30

INTERNALXME: 10.240.90.191
INTERNALIMI: 169.254.5.49
INTERNALXMI: 10.240.90.245
INTERNALIMI: 169 2545 33

INTERNALXMI 10.240.90.244
INTERNALIMI: 169 2545 32

INTERNALXMI 10.240.90.243
INTERNALIMI: 169.254.5.31

=] Main Menu - .
= %D Administration Main Menu: Configuration -> Servers
=] £ Configuration
] (2 Networking
[0 senvers Hostname Role System ID Server Group Network Element Location Place Details
[0 senver Groups
3] Resouree Domains DCANO Metwork OAM&P DCANO NOSG NO Site1
[0 Places
D Place Associations DCASO System OAM DCASO 508G SOAM Site1
[1 DSCP
Gl (3 Alarms & Events DCANPY e WPSG SOAN Site
[+ 1 Security Log More.
[+ 7 Status & Manage
] £ Measurements DCASBR1 P SBRSG1 SOAM site1
[+]] Communication Agent
(] (] Diameter Common DCASBR2 M SOAM Site1
(3] (] Diameter
& 1 RADIUS DCASBR2 P SOAM site1
[+ C18BR
[+] (] DCA Framework
& Help
[Legal Notices
[Logout
Insert Report

Figure 21: Servers Configuration

DCA Programmer’s Guide, E93198 Revision 01, September 2018

21

CONFIDENTIAL — ORACLE RESTRICTED

6.3.3.2 Step A.2: Server Group Configuration

The Server Groups allow the user to assign a function (DSR, SBR, etc.), parent relationships, and levels
to a group of servers that share the same role, such as NOAMP, SOAM, and MP servers.

On the Server Group screen, configure the new SBR Server Group SBRSGL1 that includes the DCASBR1
server and has SBR function, see Figure 22. Assign the Parent Relationship and Level C to a group of
servers that share the SBR Role. Configure the DA-MP MPSG Server Group that includes DCAMP1
server and has the function of DSR.

= Main Menu " -
EI gy Main Menu: Configuration -> Server Groups
[+ (] Administration
[=] =y Configuration _F\Iler‘ -
[+]] Networking _
[sewers Server Group Name Level Parent Function Connection Count Servers

[0 senver Groups
[7] Resource Domains

Metwork Element. SOAM NE HA Pref. DEFAULT
DSR (multi-active

[Places WPSG c S08¢ cluster) 1 Server Node HA Pref VIPs
[Place Assaciations DCAMP1
[+ (] DSCP
& (] Alarms & Events DSR (actheretands Network Element NO NE HA Pref: DEFAULT
NOSG A NONE ¢ 79 Server Node HA Pref ViIPs
[+ (] Security Log pair)
[+ (] Status & Manage DCANO
[+ [C] Measurements
Network Element: SOAM NE HA Pref: DEFAULT
[[Communication Agent
(4] (] Diameter Common SBRSG1 c 505G SBR 1 Server Node HA Pref ViPs
& (1 Diameter DCASBR1
E O RrADIUS SBRSG2 B 508G SBR 1
& [1SBR
[# [Z] DCAFramework Network Element: SOAM NE HA Pref. DEFAULT
DSR (active/standby
@ Help 35056 B NOSG pair) 1 Server Node HA Pref ViPs
[Legal otices DCASO
[= Logout
Insert Report

Figure 22: Server Groups Configuration

DCA Programmer’s Guide, E93198 Revision 01, September 2018 22

CONFIDENTIAL — ORACLE RESTRICTED

6.3.3.3 Step A.3: Places Configuration

The Places allow building associations for groups of servers at a single geographic location. These places
can then be grouped into place associations, which create relationships between one or more place.

On the Places screen configure a new place Sitel. Set a unique instance name, a Place Type Site, and a
group of server members belonging to the site. For our example, all available servers are in the same
place, see Figure 23 and Figure 24.

A Place Type is always Site.

- M: M - - " "
B8 a‘zd e”“‘ \ Main Menu: Configuration -> Places [Edit]
[+] (0] Administration Fri May 20 08:42:37 2016

[5] £3 Configuration
3]] Networking

E Serere Editing Place Site1
ener Groups

[7] Resource Domains

1) Places b=
[0 Place Associations Field Value Description
[3 DsScP
[(] Alarms & Events Place Name™ Site1 Unique identifier usedto label a Place. [Default = n/a. Range = A 1-32-character string. Valid characters are alphanumeric, underscore, dash, and space.] [Avalue is required]

[+ [Security Log

[+] O] Status & Manage

[3] 1 Measurements Parent * NONE The Parent of this Place [Avalue is required]
3] (C] Gommunication Agent

[+] (2] Diameter Common

[] [Diameter v PlaceType* Site The Type of this Place [Avalue is required]
3] 1 RADIUS
B QSR Servers

[=] =3 Configuration
[] SER Databases

[} $BR Database Resizing Plans o DEANO Avallable servers in HO
[3 SBR Data Migration Plans
£] Databaze Options DCASO

[3 Maintenance DCANMP1
77 SBR Database Status SOAM DCASBR1 Available servers in SOAM
77 SBR Status DCASER2
7} SBR Database Reconfiguration € DCASER3

[5] 23 DCA Framework
[#) Configuration Ok || Apply || Cancal

[5] /3 First Dea Application

Figure 23: Places Configuration

= 2 Main Menu
[+ 1 Administration
[=] ‘=3 Configuration T
[+ (1 Networking
[servers Place Name Type Parent Place Servers
[3 server Groups
D Resource Domains Site1 Site
[places
[} Place Associations
[(7 DscP
[7 Alarms & Events
[+]] Security Log
[+] Status & Manage
[+ 1 Measurements
[+] (2] Communication Agent
[+ [Diameter Common
[+] [Diameter
[+ (1 RADIUS
= 1 SBR
[+ [DCAFramework
& Help
[3 Legal Motices
& Logout

Main Menu: Configuration -> Places

| DCASO |IDCAMP1DCASBRA]

Insert Report

Figure 24: View Places

DCA Programmer’s Guide, E93198 Revision 01, September 2018 23

CONFIDENTIAL — ORACLE RESTRICTED

6.3.3.4 Step A.4: Place Associations Configuration

The Place Association function allows you to create relationships between places. Places are groups of
servers at a single geographic location.

On the Place Associations screen, create the new place association DCAPAL that includes Sitel. Select
the Place Association Type Applications Region, see Figure 25 and Figure 26.

Always select Applications Region type for the DCA applications and the SBR databases they use.

The Place Association in the SBR Databases configuration defines the scope of Database users. The
database in the associated Place Association can only be accessed by the DA-MPs in the same Place
Association.

[= & Main Menu
[(3 Administration
[= ‘=3 Configuration
[+] (] Networking
[Servers
[Server Groups
[Resource Domains

Main Menu: Configuration -> Place Associations [Edit]

Fri May 20 08:43:19 201¢

Editing Place Association DCAPA1

0 Places Place Association
[Place Associations Field Value Description
[+ C1DSCP
[+] (3 Alarms & Events Place Association Name * Unique identifier used to label a Place Association. [Default = n/a. Range = A 1-32-character string. Valid characters are alphanumeric, underscore,
] (3 Security Log DCARAY dash, and space] [Avalue is required]

[+ (1 Status & Manage
[&] (1 Measurements

[+] (2] Communication Agent = Place Association Type * Applications Region B The Type of this Place Association [Avalue is required]
[[Diameter Common

(&] (1 Diameter r—

] (1 RADIUS

= SBR

=2a Places Site1 Places in this Place Association

[5] &3 Configuration
[7] SBR Databases
[] SBR Database Resizing Plans Ok Apply Cancel
[SBR Data Migration Plans

Figure 25: Create Place Association

= Main Menu
[+] [Administration

[3 Configuration

[+] [Networking

Main Menu: Configuration -> Place Associations

0 servers Place Association Name Type Places
[5) server Groups
[3] Resource Domains DCAPA1 Applications Region

[F) Places
[Place Associations
[+] DSCP
[+] [Alarms & Events
[+] [Security Log
[+ [Status & Manage
[+]] Measurements
[+] 1 Communication Agent
[+]] Diameter Common
[+] [Diameter
& [RADIUS
& 3 SBR
[+]] DCA Framework
@ Help
D Legal Notices
@ Logout

Insert Report

Figure 26: View Place Association

DCA Programmer’s Guide, E93198 Revision 01, September 2018 24

CONFIDENTIAL — ORACLE RESTRICTED

6.3.3.5 Step A.5: Resource Domain Configuration

The Resource Domains (RD) screen enables users to assign a set of Server Groups to a Resource Domain
profile, which identified the database type.

On the Resource Domains screen configure the new resource domain SBRRD1. Assign the Server Group

SBRSG1, select the Resource Domain Profile Session Binding Repository for the SBR database (see
Figure 27 and Figure 29).

[= = Main Menu
(+]] Administration
[= &3 Configuration
[+] (1 Networking
[sewers
[Senver Groups
[Resource Domains

Main Menu: Configuration -> Resource Domains [Edit]

Editing Resource Domain SBRRD1

Resource Domain

Fri May 20 08:41:3

[Places
[Place Associations Field Value Description
(& C1 DSCP
[(3 Alarms & Events Unique identifier used to label a Resource Domain. [Default = nfa. Range = A 1-32-character string. Valid characters are alphanumeric and
Resource Domain Name* SBRRD1

3] (3 Security Log

3] (] Stalus & Manage

(3] [Measurements

&] Commurication Agent
(3] [Diameter Common
[&] (] Diameter

0

Resource Domain Profile *

Session Binding Repository

underscore] [A value is required]

B The Profile of this Resource Domain [Avalue is required]

Server Groups
[3 RADIUS
= C3SBR [wPsG
[] 3 Cenfiguration [NOSG
D SBR Databases Server Groups SBRSG1 Server Groups associated with this Resource Domain
[0] SBR Database Resizing Plans [] SBRSG2
[0 SBR Data Migration Plans 7] sosG

|£] Database Options:
[=] 3 Maintenance
% QAR Natahaca tanic

Ok Apply Cancel

Figure 27: SBR Resource Domain Configuration

On the Resource Domains screen, configure the new resource domain DCARD1. Assign a Server Group
MPSG, select the Resource Domain Profile DCA Application MPs (see Figure 28 and Figure 29).

[= & Main Menu
(] (2 Administration
(] 3 Configuration
(+] (] Networking
[0 seners
[Server Groups
[Resource Domains

Main Menu: Configuration -> Resource Domains [Edit]

Editing Resource Domain DCARD1

Fri May 20 08:42:08

B Places Resource Domain
[Q Place Associations Field Value Description
[(1 DscP
(5] (] Alarms & Events Unique identifier used to label a Resource Domain. [Default = n/a. Range = A 1-32-character string. Valid characters are alphanumeric and
Resource Domain Name * DCARD1

[(] Security Log

[+] (] Status & Manage

[#] (] Measurements

[#] (] Communication Agent
[[Diameter Common

]

Resource Domain Profile *

DCA Application MPs

underscore] [Avalue is required]

B The Profile of this Resource Domain [A value is required.)

& (3 Diameter Server Groups
[+ (] RADIUS
= S3SBR WPSG
[£3 Configuration [NOSG
[SBR Databases Server Groups [C] SBRSG1 Server Groups associated with this Resource Domain
[0) SBR Database Resizing Plans [[] sBRSG2
[0 SBR Data Migration Plans 7] sose

%] Database Options
[£ Maintenance
% SRR Natahace Stahis

m

= =) Main Menu
[+ (1 Administration
[Z] ‘3 Configuration
[+ (] Networking
[serers
D Server Groups
D Resource Domains
[Places
D Place Associations
[[DSCP
(Z] Alarms & Events
(2] Security Log
(2] Status & Manage
(] Measurements
(23 Communication Agent
(2] Diameter Comman
(2] Diameter

e e

EEEEEBRE

Ok Apply Cancel

Figure 28: DCA Application MP Resource Domain Configuration

Main Menu: Configuration -> Resource Domains

Resource Domain Name

DCARD1

SBRRD1

Profile Server Groups
DCA Application MPs

Session Binding Repository

Figure 29: View Resource Domain Configuration

DCA Programmer’s Guide, E93198 Revision 01, September 2018

25

CONFIDENTIAL — ORACLE RESTRICTED

6.3.3.6 Step A.6: SBR Database Configuration
On the SBR Databases screen, create the new database USBR1 (see Figure 30).

Select Database Type: Universal, Resource Domain: SBRRD1, Number of Service Groups: 1, Place
Association: DCAPAL, Owner Application: CountULR, as illustrated in Figure 31.

Main Menu: SBR -> Configuration -> SBR Databases -> [Insert]

Adding a new SBR Database

Field Value

Database Name ™

Database Type * - Select -

Resource Domain * - Select -

Number of Server Groups *

Place Association * - Select - l

Owner Application - Select - B

Ok Apply Cancel

Description

Aname that uniguely identifies the SBR Database

[Default = n/a; Range = A 32-character string. Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit] [A

value is required.]

The type of SBR Database
Select ‘Binding’ for a Policy Binding database, or "'Session’ for a Policy DRA or Online Charging DRA Session database or Universal for Universal SBR database.
[Default = n/a; Range = 'Binding’ or ‘Session’ or ‘Universal] [Avalue is required]

The Resource Domain that contains the SBR Server Groups configured for use by this database.

Select the Resource Domain that will host this database

[Default = n/a; Range = Configured Resource Domains matching the selected Database Type that have not already been assigned to a Database] [Avalue is
required.]

The number of SBR Server Groups required o host this database

Enter or change the number of Server Groups necessary to support the desired capacity of the database. If the selected Resource Domain already contains Server

Groups, the number of Server Groups in the Resource Domain is displayed in the field, but can be overridden as desired.
[Default = n/a; Range = 1 to 8] [Avalue is required]

The Place Association that contains the Places (Sites) that will use this database

Selectthe Place Association that is to use this 3BR Database.

[Default = n/a; Range = Configured Place Associations matching the selected Database Type that have not already been assigned to a Database] [A value is
required.]

The name of application that owns the configured SBR DB

Select Owner Application that is the owner of the SBR Database if the Database Type is Universal. Otherwise
the Owner Application is displayed automatically as 'PCA'.

[Default = none; Range = None, PCA and configured DCA application names]

Figure 30: Create SBR Database

DCA Programmer’s Guide, E93198 Revision 01, September 2018

26

CONFIDENTIAL — ORACLE RESTRICTED

Each U-SBR DB is assigned to an owner DCA App. This is necessary for the U-SBR to support multiple
DCA Apps (i.e., the owner DCA App and an arbitrary number of guest DCA Apps) to query the same U-
SBR DB. The owner DCA App can perform all possible queries on the U-SBR DB. Guest DCA Apps
on the other hand can restrict their access to read-only access to the U-SBR DB by checking the Read
Only U-SBR Access as Guest option on the Main Menu: DCA Framework—><DCA App
Name>->General Options (see Section 9.2.3).

The U-SBR DB configured in a Place Association is only accessed by the DA-MPs in the same Place
Association.

= 2 Main Wenu
[# (23 Administration
[= 3 Configuration _
[(3 Networking
[seners
D Server Groups Table Description: The SBR Databases table contains a row for each configured SBR database, including: the Database Name, the Database Type, the Resource Domain the database is mappedto, the Nun
the database, the Place Association that defines the scope of the database, and the Owner Application that owns the database

Main Menu: SBR -> Configuration -> SBR Databases

[Resource Domains
[Places
[Place Associations
[(3 DScP
[03 Alarms & Events
[3 Security Log
[+] Status & Manage
[+] (] Measurements
[+ 1 Communication Agent
[+] [Diameter Common
[+] [Diameter
[3 RADIUS
= £YSBR
[=] {3 Configuration
[7 SBR Databases

Database Name Database Type Resource Domain Number of Server Groups ~ Place Owner

USBR1 Universal SBRRD1 1 DCAPA1 First Dca Application

[7) SBR Database Resizit
[X SBR Data Migration PI
[£] Database Options
[+] Maintenance
[+] [DCAFramework

& Help

[Legal Notices
(@ Logout Insert | Edit | Delete
(I v

Figure 31: View SBR Database

From the NO Main Menu->SBR->Maintenance—>SBR Database Status, prepare and enable the USBR1
database.

6.3.4 Step 3: Define the Configuration Data Schema
CountULR does not use any DCA App configuration data.

6.3.5 Step 4: Provision the Configuration Data
CountULR does not use any DCA App configuration data.

6.3.6 Step 5: Provision the DCA App Business Logic

The CountULR DCA App implements the following business logic:

e When receiving a ULR message, extract the user name from the User-Name AVP and check if a state
has been created for the respective user:
e If the user name is not found, create a state that contains a counter set to 1.

e If the user name already exists, read the existing state, increment the counter and write the state
back to the U-SBR DB.

e When receiving a CLR message, extract the user name from the User-Name AVP and delete the state
corresponding to the respective user, if it exists.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 27

CONFIDENTIAL — ORACLE RESTRICTED

Figure 32 illustrates a typical call flow. CountULR uses three U-SBR API calls: createOrRead,
concurrentUpdate and delete. The U-SBR API is described in Section 11.7.

The very first ULR

Subsequent ULR

Figure 32: CountULR Call Flow

The Perl code is illustrated in Figure 25.

use constant({

key types for our app - only NAI is currently used,

the others are for exemplification

IMSI => 0,

SESSION => 1,

NAI => 2,

IPv4d => 3,

command codes for S6 commands
ULR CMD => 316,

CLR CMD => 317,

}i

this function is called when receiving a diameter request

message

sub process request({

session state to be stored on the sbr

the session state stores:

- no
- no
- no
my S$Ssbr

{

of requests for this user-name

of success replies for this user-name

of error replies for this user-name

state =

MME DCAMP1 USBR1 HSS
for this user ULR
CreateOrRead——»1—__ | Counteris
L~countULR is not invoked, B Ok initialized to 1
ULA is forwarded by DSR ULR .
LA - ULA:
ULR———»] State is found,
CreateOrRead L counter value is
l-4——RecExists returned
|
Increment |_—"|
——C —
counter oncurrentUpdate - |Store new counter
= Ok value
ULR =
LA = ULA
——— ClR———»
Delete——— =4
- ok B Delete user state
CLR [
-—CLA = CLA

DCA Programmer’s Guide, E93198 Revision 01, September 2018

28

CONFIDENTIAL — ORACLE RESTRICTED

requests => 1 # only requests are currently counted
#ok replies => 0,
#err replies => 0

}i

diameter message is the first parameter
my Sparam = shift;
only one key type for this app: NAI
my S$key type = NAI;
get the diameter message object
my Smsg = diameter::Param::message (Sparam) ;
if (!defined (Smsqg)) {
die "Bad diameter message parameter.";

try to get the the diameter command code from the diameter message
my $Scmd = diameter::Message: :commandCode ($msqg) ;
if(!defined($Scmd)) {

die "No command code in diameter message.";

get User-Name from the message
my Suser = diameter::Message::getAvpValue ($Smsg, "User-Name") ;
if (!defined (Suser)) {

could not create Suser

die "Could not get the User-Name value from the message"

if (ULR CMD == Scmd) {

process Update-Location-Request

instantiate and send the "CreateOrRead" SBR stack event

my S$result = dca::sbr::sbrInstance("sbr")->createOrRead (
$key_type,
dca: :sbr::KeyDataType: :STRING, S$Suser,
dca::sbr::StateDataType: :STRING, $sbr_state,
"createOrReadCb") ;

check the "synchronous" error

if(!defined(Sresult)) {
could not create the sbr request
die "could not create the SBR request";

elsif (CLR_CMD == $cmd) {
process Cancel-Location-Request
instantiate and send the "Delete" SBR stack event
my Sresult = dca::sbr::sbrinstance("sbr")->delete(Skey type,
dca::sbr::KeyDataType: :STRING, Suser,
"deleteCb") ;

DCA Programmer’s Guide, E93198 Revision 01, September 2018

29

CONFIDENTIAL — ORACLE RESTRICTED

check the "synchronous" error
if (!defined (Sresult)) {
could not create the sbr request
die "could not create the SBR request";

}
else(
die "unknown diameter command received";

this function is called when receiving a diameter answer
message
sub process answer{

this function is called when receiving an DeleteStateResult
answer from the SBR
sub deleteCb({
my S$sbr code = dca::sbr::result()->code();
if (!defined($sbr code)) {
could not get the result code of the SBR answer
die "did not get the result code of SBR answer";

if (dca::sbr::ResultCode: :RecNotFound == $sbr code) {

die "could not find a record with the given key on the SBR";
}
elsif(dca::sbr::ResultCode::0k != $sbr code) {

die "SBR error: $sbr code";

this function is called when receiving an CreateOrReadStateResult
answer from the SBR

sub createOrReadCb

{

my $sbr_code = dca::sbr::result()->code ()
check the result code
if (dca::sbr::ResultCode: :RecExists == $sbr code) {

my $sbr state = dca::sbr::result()->data();

diameter message is the first parameter
my S$Sparam = shift;

only one key type for this app: NAI

my Skey type = NAI;

get the diameter message object

my $msg = diameter::Param::message ($param);

DCA Programmer’s Guide, E93198 Revision 01, September 2018 30

CONFIDENTIAL — ORACLE RESTRICTED

if (!defined (Smsqg)) {
die "Bad diameter message parameter.";

get User-Name from the message
my Suser = diameter::Message::getAvpValue (Smsg, "User—-Name") ;
if (!defined (Suser)) {

could not create S$Suser

die "Could not get the User-Name value from the message"

record was already existing on the SBR; update it
$sbr state->{requests}++;
my Sresult = dca::sbr::sbrInstance("sbr")->concurrentUpdate (
$key_type,
dca::sbr::KeyDataType: :STRING, S$user,
dca::sbr::StateDataType: :STRING, $sbr_state,
"concurrentUpdateCb") ;
check the error
if (!defined (Sresult)) {
could not create the sbr request
die "could not create the SBR request";

}
elsif(dca::sbr::ResultCode::0k != $sbr_code){

die "SBR error: $sbr code";

this function is called when receiving an ConcurrentUpdateStateResult

answer from the SBR
sub concurrentUpdateCb{
use “result” API function to retrieve error code and data:

my $sbr_code = dca::sbr::result()->code ()

check the result code
if (dca::sbr::ResultCode: :RecObsoleted == $sbr code) {
record was already updated by another MP on the SBR;
try to update it once again
my $sbr_state = dca::sbr::result()->data();
diameter message is the first parameter
my $param = shift;
only one key type for this app: NAI
my S$key type = NAI;
get the diameter message object
my Smsg = diameter::Param::message (Sparam) ;
if (!defined (Smsqg)) {
die "Bad diameter message parameter.";

DCA Programmer’s Guide, E93198 Revision 01, September 2018

31

CONFIDENTIAL — ORACLE RESTRICTED

get User-Name from the message

my Suser = diameter::Message::getAvpValue (Smsg, "User-Name") ;

if (!defined (Suser)) {
could not create Suser
die "Could not get the User-Name value from the message"

}

$sbr state->{requests}++;

my S$result = dca::sbr::sbrInstance("sbr")->concurrentUpdate (
S$key_type,
dca: :sbr::KeyDataType: :STRING, S$user,
dca::sbr::KeyDataType::STRING, S$sbr state,
"concurrentUpdateCb") ;

check the error

if (!defined (Sresult)) {
could not create the sbr request
die "could not create the SBR request";

}

}
elsif(dca::sbr::ResultCode::0k != $sbr code) {
die "SBR error: S$sbr code";

}

Figure 33: CountULR Perl Code

6.3.6.1 What Does a State Consist Of?

A state is essentially a mapping between a Key and a Value. What exactly the Key and Value are is
completely under the DCA App’s control. The U-SBR does not attach any semantics to a DCA App
state. In CountULR the Key is the user name extracted from the User-Name AVP and the Value is
basically a counter that counts the total number of ULR messages.

Even though CountULR uses a single Key (of type NAI), DCA Apps may, in general, use multiple Keys
(IMSI, MSISDN, IP addresses, Diameter Session-Id, etc.).

A DCA App may distinguish between the different Keys by declaring their Key Types. The Key Type
helps avoid collisions like for instance between NAI key “fred” and IPv4 address key 66.72.65.64, or
between IP source address key 1.2.3.4 and destination IP address key 1.2.3.4.

The Value associated to a Key is the value of a Perl variable. For CountULR, the Value is a Perl hash
table containing one key requests that store an integer representing the ULR counter. Perl complex data
structures like hash tables and arrays are converted to JSON and stored in the U-SBR DB as strings.
When retrieved from the U-SBR they are converted back to the original data structure. Scalar Perl
variables, on the other hand, need not undergo a JSON conversion.

Finally, the data type of Key and Value need to be specified to one of the pre-configured data types:
dca::sbr::KeyDataType::BCD, dca::sbr::KeyDataType::UINT32, dca::sbr::KeyDataType::INT64,
dca::sbr::KeyDataType::STRING, dca::sbr::KeyDataType::1Pv4, dca::sbr::KeyDataType::IPv6, and
respectively: dca::sbr::StateDataType::BCD, dca::sbr::StateDataType::UINT32,
dca::sbr::StateDataType::STRING, dca::sbr::StateDataType::IPv4, dca::sbr::StateDataType::IPv6.

This helps the U-SBR DB to optimize the way the Key-Value pair is stored and retrieved.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 32

CONFIDENTIAL — ORACLE RESTRICTED

6.3.6.2 What are Asynchronous API Calls and Callbacks?

The dca: :sbr::sbrinstance (“sbr”) >createOrRead,

dca::sbr::sbrinstance (“sbr”) 2concurrentUpdate and

dca::sbr::sbrInstance (“sbr”)>delete API functions initiate, each of them, an U-SBR DB
query. They are asynchronous functions, in the sense that they do not wait until a response from the
U-SBR is received. They construct the U-SBR DB query and return immediately, to allow the other
Diameter messages to be processed. The query itself is sent after the event handler execution completes.

How can then the DCA App learn about the outcome of the U-SBR DB query it just sent? It may be
observed that all the U-SBR API functions can register, as the last parameter, the name of a callback
subroutine. The callback subroutine is invoked by the DCA framework when the outcome of the
corresponding U-SBR DB query is known. The outcome may be: (i) an error condition that prevented the
U-SBR query to even be sent; (ii) the U-SBR DB response itself; or (iii) an error condition indicating that
no response has been received within a certain timeout interval.

6.3.6.3 How is the U-SBR State Returned to the Perl Script?

In the callback subroutine the DCA App programmer can use the dca: :sbr: :result () classto
retrieve the error code and, if the query was successful, the result.

6.3.6.4 What is Concurrent in a concurrentUpdate?

Incrementing a counter in a distributed system is not as trivial an operation as it may seem because race
conditions may occur between different threads, processes or hosts that attempt to increment the same
counter at the same time.

In our case, such race condition may occur when ULR messages for the same user name are received at
around the same time or in quick succession. This can obviously happen when the network contains
multiple DA-MPs, but it can also happen in our simplified topology with one single DA-MP because
there are always multiple Perl interpreters running simultaneously that execute the event handlers. There
are therefore multiple CountULR execution instances, running in parallel, at any given time.

A CountULR execution instance is basically reading the counter value from the U-SBR DB record that
corresponds to the user name, incrementing it and updating the record on the U-SBR, i.e., a read-
increment-update sequence. The trick is to check that the record a CountULR execution instance is trying
to update is the same record that was previously read. If it is not the same, then one or more other
CountULR execution instances have incremented the counter in the meantime and the operation needs to
be repeated on the new counter value, otherwise the counter value is corrupted and the counter value is, in
the end, less than it should be.

When the concurrentUpdate query detects that the U-SBR DB record has been updated, it automatically
returns the new record so that an explicit new read operation is not needed.

This mechanism is called optimistic offline locking and is often encountered in transactional DBs. It is
optimistic because the rate of the race conditions is expected to be relative low compared to total number
of increment operations. It is offline because the race condition is resolved by re-trying the operation,
rather than effectively locking the record. Figure 34 illustrates such a race and how the optimistic offline
locking mechanism solves it. For simplicity, we show two competing DA-MPs, however, as already
mentioned, it equally applies to one single DA-MP running multiple Perl interpreters.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 33

CONFIDENTIAL — ORACLE RESTRICTED

MME DCAMP2 DCAMP1 USBR1 HSS
ULR——— /< Assume counter == 3 ‘
——————————CreateOrRead————————»
counter ++; counter becomes 4 }\ - RecExists
ULR > /{ counter is still 3 ‘
1 CreateOrRead——]
counter ++; counter becomes 4 l«— RecExists

but it should actually be 5! |
Nevertheless, DCAMP1 wins the race —ConcurrentUpdate—

4—0k7\< counter is now 4 ‘
ULR -
- ULA -t ULA
The new value of the 7ConcurrentUpdat24h\ counter has been updated by DCAMP1, it
counter (4) is returned | —4=——— Record Obsoleted is no longer the ,instance” DCAMP2 read,

T therefore updating it is not allowed
counter ++; counter becomes 5 |
ConcurrentUpdategb\{

A

Ok

counter is now 5 ‘

ULR -
ULA

l—ULA

A

Figure 34: A Counter Increment Race

6.3.7 Step 6: Render the Flow Control Chart
Render the Flow Control Chart based on the Perl script. Save the code and check the syntax.

uuuuuuuuuuuu
100% i
< > A v ia Q File v | Edt v ExecBlocks v Fit Resize

mo
Fe
o
g
3
B
E
]
i

[0 Places
[0} Place Associations Startrequest
[(] DscP
[+] (0] Alarms & Events
[z (21 Security Log

[+ (7 Status & Manage

(+] (] Measurements process_request

- Q|1

(+] (] Communication Agent
(+] (*1 Diameter Common
(#] (] Diameter
[O RADIUS
[€3 SBR ("sbr}>crealeOrRead ('sbr)->delete
[4 Configuration —) -
[0) SBR Databases ‘J ‘J
[SBR Dalabase Re
[SBR Data Migratior| _
€] Database Options |~
[= {3 Maintenance
[T SBR Database Staf
] SBR Status
7% SBR Database Re
[2 =y DCA Framework ("sbr)-+concumentUpdate T
%] Configuration —) =pack =
[4 First Dea Application ‘_I « m '
5] General Options
[Q) Trial MPs assignmy
[3) Application Control Output
& Help

j
]|

age, the app will check whether there is already
with the User-Neme in the ULR message. if it does

createOrReadGh deleteCh

ated with the User-Neme in the incomin
oncurrentlpdate

age, the epp will try to delete the state data
z-Name value

Figure 35: Flow Control Chart

6.3.8 Step B: Logical to Physical U-SBR DB Name Mapping

Logical-to-physical U-SBR name mapping provides the glue between the Perl script and the U-SBR
topology. It enables:

e The Perl script to remain unchanged across deployments (Lab->Live, Oracle->Customer) by using
the same logical names for the U-SBR DBs, while the topology and names of the physical U-SBR
DBs in each particular network may vary.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 34

CONFIDENTIAL — ORACLE RESTRICTED

e The Perl script to remain unchanged across Place Associations inside the same deployment, because
the names of physical U-SBR DBs are different in each Place Association. This situation is not
apparent in our example, because we are using a network that consists of only one site.

o Different versions of the same DCA App to use different logical names mapping to the same physical
U-SBR DBs.

o Different versions of the same DCA App to use the same logical names mapping to different physical
U-SBR DBs, because the DB layout (number of U-SBR DBs or their scope site vs. global) has
changed in newer versions.

e A DCA App to map a logical U-SBR DB name to a physical U-SBR DBs of another DCA App.

The logical-to-physical U-SBR DB mapping is configured per DCA App version. In the Application
Control screen, select a DCA App version and click the SBR DB Name Mapping, see Figure 36.

Main Menu: DCA Framework ->CountULR -> Application Control

Filter* -
Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checksum
Version1 Trial 2016-May-19 14:06:24 EDT f5ce22fab716fcd857626af0db614384
Config Tables and Data Development Environment @ ~ Import
Business Logic A Level Config Data

Create New Development . Copy fo New Development L

=| Export:
Delete Business Logic Alevel Config Data Both
Make Development Make Trial Make Production S

Figure 36: SBR DB Name Mapping
Assign the logical U-SBR name “sbr” to the physical U-SBR Name USBR1, see Figure 37.

The “sbr” name must be consistently used in the Perl script as a parameter to the sbrinstance() each time
an U-SBR API function is invoked. As a result, the queries sent from the Perl script to “sbr” is delivered
to the USBRDBL.

Main Menu: DCA Framework -> CountULR ->Application Control ->Versionl -> SBR DB Name Mapping

SBR Database Logical Name SBR Database Physical Name
sbr USBR1

Ingert | | Edit | Delete

Figure 37: View SBR DB Name Mapping
6.3.9 Step 7: Test the DCA App Version
See Section 3.3.7.

6.3.10 Step 8: Promote the DCA App Version to Production
See Section 3.3.8.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 35

CONFIDENTIAL — ORACLE RESTRICTED

7. Monitoring a DCA App

This chapter provides a general description of Custom MEALSs, templates and their purpose. The
monitoring of the execution of a DCA App is possible by means of the Custom MEAL feature.

The Custom MEAL feature enables a DCA App programmer to define and use measurements, KPIs, and
events, on demand:

e Measurements are used to count specific events or amounts, as required by the DCA App’s business
logic. Their historical values measured during specific time intervals and/or on specific hosts are
available via reports;

o KPIs display real-time statistics of the measured events or amounts, like for instance average values;

e Events may be triggered automatically when the currently measured values exceed the configured
thresholds.

Alternatively, events may be triggered explicitly from the DCA App code.

The Custom MEAL feature hides most of the complexity of the underlying DSR objects that implement
the measurements, KPIs, and events by defining a number of four templates, which are designed to
implement specific tasks:

e The Counter template — is used to count events. The counter values are available only off-line through
the Measurement Reports.

e The Rate template — is most typically used to calculate message rates. It generates KPIs,
Measurement Reports and may be used to automatically raise alarms if the configured threshold
values are exceeded.

e The Basic template — is used to measure averages or number of elements in a set (e.g., to calculate
average size of AVPs, messages or number of users registering/deregistering). It generates KPIs,
Measurement Reports and may be used to automatically raise alarms if the configured threshold
values are exceeded.

o The Event template — is used to explicitly raise/clear alarms or generate events from the Perl script
when specific business logic conditions are detected.

Each of the templates is available in scalar and arrayed format.

We denote by "differentiation" the process of assigning a C-MEAL template instance to a DCA App. We
denote by "un-differentiation™ the reverse process of removing a C-MEAL from a DCA App and
basically returning it to the pool of un-differentiated C-MEAL, from where it can be re-assigned to
another (or even the same) DCA App.

8. ADCA App Using Custom MEALs

Chapter 7 introduced the Custom MEAL (C-MEAL) templates and their applicability. This chapter
describes a simple DCA App that uses a Rate C-MEAL to monitor the rate of the incoming Diameter
requests with just two lines of Perl code.

8.1 The Rate DCA App

The Rate DCA App differentiates a Rate C-MEAL, initializes it, and pegs it every time a Diameter
request is received. The operator can monitor the incoming message rate in real time (KPI), check the
history of the measured value (measurement report) and get notified when the configured thresholds are
exceeded (alarm).

DCA Programmer’s Guide, E93198 Revision 01, September 2018 36

CONFIDENTIAL — ORACLE RESTRICTED

8.2 Prerequisites

The DCA Framework must have been previously activated as described in [1] CGBU_018429 - DCA
Framework and Application Activation and Deactivation. Also, a DCA App with the name “Rate” is
activated as described in [1] CGBU_018429 - DCA Framework and Application Activation and
Deactivation.

The Rate DCA App has to be enabled on all the DA-MPs in the network from the SO Main Menu:
Diameter->Maintenance—> Applications.

An ART rule is added that enables Diameter requests to be delivered to the Rate DCA App.

8.3 The Process

The following steps must be followed to provision the Rate DCA App:

Business Logic and Configuration Data Provisioning Custom MEAL Configuration
Step 1: Configure the general options and behavior of the Rate DCA App. Step I: Differentiate a scalar Rate
Step 2: Create a new development version of the Rate DCA App. C-MEAL.

Step 3. Define the structure of tables to store the Rate configuration data.
Step 4: Provision the Rate configuration data.

Step 5: Provision the Rate business logic — essentially a Perl script.

Step 6: Render the Flow Control Chart based on the Perl script. Save and
perform syntax checks.

Step 7: Test the Rate DCA App: configure the Trial DA-MPs and promote Rate to Trial state.
Step 8: Compile Rate, promote Rate to Production state.

Steps 1 to 8 are similar to those described in Chapter 3. Step | is required to assign a C-MEAL to the
Rate DCA App, which can be then be used via the C-MEAL API, which is described in Section 11.6.

Step | may be executed in any order relative to steps 1 to 5.

8.3.1 Step I: Differentiate a C-MEAL

C-MEALs are differentiated from the Main Menu->DCA Framework->Rate->Custom MEALS
screen, by clicking Insert. For the Rate DCA App in particular, TestRate, a scalar rate C-MEAL, is
differentiated (see Figure 38). TestRate raises an alarm when the configured thresholds are exceeded.
The threshold values represent percentages from the 100% Threshold Value, which in our example is
exactly 100.

Main Menu: DCA Framework -> Rate -> Custom MEALs

Tue Jul 12

Measurement 100% Afarm Afarm Threshold ~ Threshold Threshold Threshold Threshold Threshold
Type

State Threshold Autoclear Throttling - . A A " .
Value Interval Interval Min Clear Min Set Maj Clear Maj Set Crit Clear Crit Set

Mame Template Type

TestRate Rate Scalar Completed 100 - ~ B5 o 758 80 85 a0

Insert Edit Delete Pause updates

Figure 38: TestRate Differentiation

DCA Programmer’s Guide, E93198 Revision 01, September 2018 37

CONFIDENTIAL — ORACLE RESTRICTED

8.3.2 Step 1: Configure the DCA App's General Options and Behavior
See Section 3.3.1.

8.3.3 Step 2: Create a New Development Version
See Section 3.3.2

8.3.4 Step 3: Define the Configuration Data Schema
Rate does not need any DCA App configuration data.

8.3.5 Step 4: Provision the Configuration Data
Rate does not need any DCA App configuration data.

8.3.6 Step 5: Provision the DCA App Business Logic

The Rate DCA App implements a simple business logic that consists of pegging the Rate C-MEAL each
time a Diameter request is received.

The Perl code is illustrated in Figure 39. Note that the C-MEAL name used to initialize the Perl object
must be the same as the one configured for the C-MEAL during differentiation (TestRate).

my S$rateObject = new dca::meal::rate("TestRate");

die "Failed to bind to the rate template" unless S$rateObject;
force *compilation* error if
rateObject initialization fails

sub process request({
die "Pegging 'TestRate' Failed" unless S$rateObject->peg();
a *runtime* error will be generated in the unlikely
event peg() fails
}

And that's it! Alarms will be automatically raised when the configured

thresholds are exceeded
Figure 39: The ""Rate" DCA App Code

8.3.7 Step 6: Render the Flow Control Chart
The same process described in Section 3.3.6 is followed.

8.3.8 Step 7: Test the DCA App Version
The same process described in Section 3.3.7 is followed.
At this stage, we can finally monitor the Rate DCA App in the following ways:

e The DCA:Rate KPI group includes all the KPIs that belong to the Rate DCA App. In the Main
Menu-> Status&Manage->KPIs the DCA:Rate group is included in the KPI filter criteria (see
Figure 40). As a result, the exponentially smoothened average of the ingress rate (TestRate) is
displayed in real time (see Figure 41).

DCA Programmer’s Guide, E93198 Revision 01, September 2018 38

CONFIDENTIAL — ORACLE RESTRICTED

The history of the measured values can be accessed from the Main Menu->Measurements—>Report
screen. The DCA:Rate measurements group includes all the measurements that belong to the Rate
DCA App and is included in the filtering criteria (see Figure 42). As a result, the history of the
TestRate measurements is displayed (see Figure 43).

¢ An alarm with the corresponding severity is raised when the respective threshold values are exceeded.
This can be seen for instance in Figure 41. The alarm details can be accessed from Main
Menu->Alarms&Events. Figure 44 illustrates the alarm history, obtained by progressively

increasing the message rate above the critical set threshold and then progressively reducing it below
the minor clear threshold.

Main Menu: Status & Manage -> KPls [Group: "Server']

Tue Jul 12 08:39:14 2016 EDT

Entire-Metwork HPCO&GNO HPCOBS0 HPCOSMP1 HPCOESER1

Y Filter Options
Non Arrayed CPUPerCore g Go Reset
Group
Mame Walug Desc E
CPU 0.61 % Fercentage utilization of all processors on the: DCARate M
RAM 4.36% Percentage utilization of physical memmﬁt -Groupe-
Swap 0.00% Percentage utilization of swap space onthe s¢ | ComAgent
Disk 0.21 % Percentage utilization of disk space onthe ser | DCA Framewark
Shiem 0.03% Percentage utilization of shared memoryonth DCA:Rate
Uptime 4.95 days The total amount of timeddays HH:MM:S5) the SAR
Sernver
USER
-Piace Associations- -

Figure 40: Filter the DCA:Rate KPIs

Main Menu: Status & Manage -> KPls [Group: ‘DCA:Rate’]
Tue Jul 12 08:51:02 2016 EDT
Entire-Network Y"
Non Arrayed 9
Name Average Max Min Median Sum Desc E
TestRate 78.71 7871 78.71 7871 78.71 testrate kpi
~
The ingress rate has increased
above the major threshold set
value (70)
33355 test rate alarm .
PiitskpTotte o
0 HPCOGHO (ACTIVE HETWORK OAM&P) | Updates enabled 2 30
w0l=SEVERITVgaridfilter oo=EQUALBaridfiter val=MAIOR —

Figure 41: Display TestRate KPI

DCA Programmer’s Guide, E93198 Revision 01, September 2018 39

CONFIDENTIAL — ORACLE RESTRICTED

Main Menu: Measurements -> Report (Filtered)

Tasks ~

MPSG |~ HPCOGMP1

Non-Arraved
Filter
Times Measurement:
W1E] DCh:Rate j Fifteen Minute j Reset
201 B

2016 | Scope:

20184 Metwork Elerment j MPSG j - Resource Domain - j - Place - j - Place Association - j Reset

Column Filter:

Mane j Like j

Time Range:

1 Hours j Ending j 2016 Jul j 12 j a9 j oo - Reset

Figure 42: Filter the DCA:Rate Measurements

Main Menu: Measurements -> Report (Filtered)

Tasks -

MPSG =~ HFCOBEMPY

Hon-Arraved

Timestamp EE;E:I';E TestRatefivy TestRateCnt TestRatePeak
2016-07-12 08:00:00 EDT 100 0000000 O 0

2016-07-12 081500 EDT 100 12135344 10823 111
2016-07-12 08:30:00 EDT 100 00995580 09008 120
2016-07-12 08:45:00 EDT 100 67921644 B1125 129

Figure 43: Display the TestRate measurements

DCA Programmer’s Guide, E93198 Revision 01, September 2018 40

CONFIDENTIAL — ORACLE RESTRICTED

Main Menu: Alarms & Events -> View History (Filtered)
Tue Jul 12

Event ID Timestamp Severity Product Process NE Server Tvpe Instar

Event Text Additional Info

33355 2016-07-12 08:53:37.948 EDT CLEAR Pracvatch S0_HPCOB HPCOBMP1 DCA DCAS
GMN_BUWTHRESHICLR Metric DCAST below minar threshold #* Current: 63 Onset

TestRateAlrm
More...

33355 2016-07-1202:53:18.948 EDT MINOR - ProcWatch S0_HPCOE HPCOBEMP1 DA DCAS
GMN_ABYTHRESHMWRN Metric DCAST above minor threshold * Current 72 Onset...

TestRateAlrm
More...

33355 2016-07-1208:53:18.948 EDT CLEAR Procatch SO_HPCOE HPCOBMP1 DCA DCAS
GN_BUATHRESHICLR Metric DCAS1T below major threshold #* Current: 72 Onset.. L

TestRatedlrm £
More...

33355 2016-07-12 08:51.15.948 EDT MAJOR Prociatch S0_HPCOB HPCOBMP1 DCA DCAS
GN_ABYTHRESHMRM Metric DCAST above major threshold # Current: 84 Onset..

TestRatedlrm
More...

33355 2016-07-12 08:51:15.948 EDT CLEAR PracWatch S0_HPCOB HPCOBMP1 DCA DCAS
GM_BUATHRESHICLR Metric DCAS1 helow ctitical threshald A Cutrent: 84 Ong

TestRateAlrm -
More...

33355 2016-07-12 08:30:29.948 EDT CRITICAL PracWatch S80_HPCOB HPCOBMP1 DA DCAS
GMN_ABYVTHRESHMIRN Metric DCAST above critical threshald * Gurrent: 90 Ons.

TestRateAlrm
More...

33355 2016-07-12 02:29:47.948 EDT MAJOR Procatch SO_HPCOE HPCOEMP1 DA DCAg

<

Export Report

Figure 44: TestRate Alarm History
8.3.9 Step 8: Promote the DCA App Version to Production

The same process described in Section 3.3.8 is followed.

9. GUI Overview
9.1 NO/SO differences

Table 1: NO/SO GUI differences

NO SO

Framework Configuration Read-only
General Options Read-only
Custom MEALSs Read-only
Trial MP Assignment Read-only

New application versions are created

Existing application versions are copied

Business Logic and/or NO Config data imported/exported

SO Config data imported/exported

SBR DB Mane Mapping Read-only
Flowchart and Script Development Read-only
Application version state transitions Read-only
Defining the configuration tables (schema) Read-only

Provisioning NO Configuration Data (table content)

Provisioning SO Configuration Data (table content)
NO configuration read-only.

System Options

DCA Programmer’s Guide, E93198 Revision 01, September 2018 41

CONFIDENTIAL — ORACLE RESTRICTED

9.2 NO Screens

The DCA Framework left hand menu on the NO includes the following screens:

Each activated application is represented by the separate menu folder with the given application name.

Configuration Screen

The application folder on the NO includes the following screens (Application Control screen contains the
buttons that lead to other DCA screens):

Custom Meals

General Options Screen

Trial MPs Assignment Screen
Application Control Screen

Create New Development Screen
Copy to New Development Screen
Import Pop-Up Window
Export Pop-Up Window
SBR Database Name Mapping
Development Environment
Tables Screen
e Provision Tables Screen
[=] ‘-3 DCA Framewark
[£] Configuration
[=] 3 DCA Frame Work Application
[] Custom MEALs
[5| General Options
[Trial MPs assignment
(] Application Control
[+] [C] Kiran Test Application
[+ O] Test App Mumber 4

Figure 45: NO Screens

DCA Programmer’s Guide, E93198 Revision 01, September 2018

42

CONFIDENTIAL — ORACLE RESTRICTED

9.2.1 Configuration Screen

The NO Main Menu—=>DCA Framework—>Configuration screen allows configuring DCA Framework
parameters: Maximum Size of Application State and Maximum Size of the Key. See Figure 46.

Main Menu: DCA Framework -> Configuration

DCA Framework Configuration

Field Value Description

Maximum size of the application state (in bytes) to be stored in the U-SBR.

Maximum Size of Application State *
PP — [Default = 256; Range = 1-64 kB.] [Avalue is required]

Maximum size of the key (in bytes) used to lookup the application state stored in the U-3BR.

Maximum Size of the Key *
¥ 268 [Default = 256; Range = 1-1024 B.] [Avalue is required.]

Apply Cancel

Figure 46: NO Configuration Screen
9.2.2 Custom MEALs

9.2.2.1 View Custom MEALs

The NO Main Menu: DCA Framework-=><DCA App Name>—->Custom MEALSs screen (illustrated in
Figure 47) lists the Custom MEAL templates differentiated for the current DCA App. It also enables new
Custom MEAL templates to be differentiated and differentiated Custom MEAL templates to be modified.

There are a limited number of Custom MEAL templates of each type for all the DCA Apps activated in a
network. An error displays if the DCA App programmer attempts to exceed these limits.

It is not possible to modify the counter/basic/rate/event and scalar/arrayed type of a differentiated Custom
MEAL template. If the type needs to be modified, then a new Custom MEAL template is created
(provided the limits have not been exceeded yet) and the old one is deleted.

Main Menu: DCA Framework -> First Dca App -> Custom MEALs

Filter* -
100% Alarm Alarm
Measurement Threshold Threshold Threshold Threshold Threshold Threshold
Name Template Type Type State Threshold Autoclear Throttling Min Clear Min Set Maj Clear Maj Set Crit Clear Crit Set
Value Interval Interval
MyEvent Event ~ Completed ~ 300 60 ~ ~ ~ ~ ~
Insert Edit Delete Pause updates

Figure 47: The Custom MEAL View Screen

DCA Programmer’s Guide, E93198 Revision 01, September 2018 43

CONFIDENTIAL — ORACLE RESTRICTED

9.2.2.2 Configure the Counter Custom MEAL Template

Figure 48 illustrates the configuration options for inserting a Counter template.

Main Menu: DCA Framework -> First Dca App -» Custom MEALSs -> [Insert]

Adding a new custom measurement or event
Field Value Description
Measurement/Event name. It will be used to derive the names of

Measurement Hame * Mndﬂ related counters, KPls, max and average measurements, alarms.
[Default = empty; Range = A 32-character string]. [A value is required]

Custom MEAL template type.
Template Type Counter |Z|) P P

[Default = Rate; Range = Counter, Rate, Basic, Event]

For Counter, Rate and Basic Custom MEALs, specify if the Custom MEAL

Measurement Type Scalar IZ| is Scalar or Arrayed.
[Default = Scalar, Range = Scalar, Arrayed].

Ok Apply Cancel

Figure 48: The Counter Template Configuration Screen

DCA Programmer’s Guide, E93198 Revision 01, September 2018 44

CONFIDENTIAL — ORACLE RESTRICTED

9.2.2.3 Configure the Basic Custom MEAL Template

Figure 49 illustrates the configuration options for inserting a Basic template. The Basic template is
optionally associated with an alarm, which is automatically raised if the configured thresholds are

exceeded.

Main Menu: DCA Framework -> First Dca App -» Custom MEALSs -> [Insert]

Adding a new custom measurement or event

Field Value
NMeasurement Name * MyBasic
Template Type Basic EI
Measurement Type Scalar El

MyBasic D ipri
KPI Description HYRRaLg Description

Generate Alarm

Alarm Description
Alarm Description B

100% Threshold Value 5000

Alarm Minor Set Threshold 50

Alarm Minor Clear Threshold 4

Alarm Major Set Threshold 70

Alarm Major Clear Threshold 60

Alarm Critical Set Threshold ap

Alarm Critical Clear Threshold gp

Ok Apply Cancel

Figure 49:

Description

Measurement/Event name. It will be used to derive the names of
related counters, KPls, max and average measurements, alarms.
[Default = empty, Range = A 32-character string]. [A value is required.)

Custom MEAL template type
[Default = Rate; Range = Counter, Rate, Basic, Event]

For Counter, Rate and Basic Custom MEALs, specify if the Custom MEAL
is Scalar or Arrayed
[Default = Scalar; Range = Scalar, Arrayed].

KPI description text.
[Default = Empty; Range = A 255-character string)

If checked, an alarm will be created.
[Default = Checked, Range = Checked, Unchecked]

Alarm description text.
[Default = Emptly; Range = A 255-character string]

An absolute value that specifies:

For Rate templates: the maximum events per second the Custom MEAL is expected to count (for instance the maximum messages per second).

For Basic templates: the maximum value the Custom MEAL is expected to measure (for instance the maximum number of bytes, AVPs, etc in a
message).

The minor, major and critical threshold values are defined as percentages from this value.

[Default = Empty; Range = 1- (2"63)-1 (i.e. 9223372036854775807)]

Minor alarm setthreshold in %.
[Default = Empty, Range = 2 - 96]

Minar alarm clear threshold in %
[Default = Empty; Range = 1- 95]

Major alarm setthreshold in %
[Default = Empty; Range = 4 - 98]

Major alarm clear threshold in %.
[Default = Empty, Range = 3 - 97]

Critical alarm setthreshold in %
[Default = Empty; Range = 6 - 100).

Critical alarm clear threshold in %.
[Default = Empty; Range =5 - 99]

The Basic Template Configuration Screen

DCA Programmer’s Guide, E93198 Revision 01, September 2018

45

CONFIDENTIAL — ORACLE RESTRICTED

9.2.2.4 Configure the Rate Custom MEAL Template

Figure 50 illustrates the configuration options for inserting a Rate template. The Rate template is
optionally associated with an alarm, which is automatically raised if the configured thresholds are

exceeded.

Main Menu: DCA Framework -> First Dca App -» Custom MEALs -> [Insert]

Adding a new custom measurement or event

Field

Measurement Name *

Template Type

Measurement Type

KPI Description

Generate Alarm

Alarm Description

100% Threshold Value

Alarm Minor Set Threshold

Alarm Minor Clear Threshold

Alarm Major Set Threshold

Alarm Major Clear Threshold

Alarm Critical Set Threshold

Alarm Critical Clear Threshold

Ok Apply Cancel

Value

MyRate

Rate E|

Scalar E|

MyRare Description

Alarm Description

40000

40
70
60
90

80

Figure 50:

Description

MeasurementEvent name. [twill be used to derive the names of
related counters, KPls, max and average measurements, alarms.
[Default = empty, Range = A 32-character string). [Avalue is required.]

Custom MEAL template type.
[Default = Rate; Range = Counter, Rate, Basic, Event]

For Counter, Rate and Basic Custom MEALs, specify if the Custom MEAL
is Scalar or Arrayed
[Default = Scalar, Range = Scalar, Arrayed]

KPI description text.
[Default = Empty; Range = A 255-character string]

If checked, an alarm will be created
[Default = Checked; Range = Checked, Unchecked)]

Alarm description text
[Default = Empty; Range = A 255-character string]

An absolute value that specifies:

For Rate templates: the maximum events per second the Custom MEAL is expected to count (for instance the maximum messages per second).
For Basic templates: the maximum value the Custom MEAL is expected to measure (for instance the maximum number of bytes, AVPs, etc.ina

message).

The minor, major and critical threshold values are defined as percentages from this value

[Default = Empty; Range = 1 - (2*63}-1 (i.e. 9223372036854775807))

Minor alarm set threshald in %
[Default = Empty; Range = 2 - 96]

Minor alarm clear threshold in %.
[Default = Empty; Range = 1 - 95]

Major alarm setthreshold in %
[Default = Empty; Range = 4 - 98]

Major alarm clear threshold in %
[Default = Empty; Range =3 - 97]

Critical alarm set threshold in %
[Default = Empty; Range = 6 - 100]

Critical alarm clear threshold in %
[Default = Empty; Range = 5-99]

The Rate Template Configuration Screen

DCA Programmer’s Guide, E93198 Revision 01, September 2018

46

CONFIDENTIAL — ORACLE RESTRICTED

9.2.2.5 Configure the Event Custom MEAL Template
Figure 51 illustrates the configuration options for inserting an Event template.

Main Menu: DCA Framework -> First Dca App -> Custom MEALSs -> [Insert]

Adding a new custom measurement or event

Field Value Description

Measurement’Event name. It will be used to derive the names of
Measurement Name * MyEvent related counters, KPls, max and average measurements, alarms.
[Default = empty; Range = A 32-character string]. [Avalue is required.]

Custom MEAL t lat 1
Template Type I E| ustom M emplate type

[Default = Rate; Range = Counter, Rate, Basic, Event]

Rlarm Description Alarm description text.

Alarm Description
P [Default = Empty; Range = A 255-character string].

Time Interval in seconds after which a raised alarm is autocleared unless not explicitly
Alarm Autoclear Interval 300 cleared or re-asserted. Avalue of 0 means the alarm never autoclears.
[Default = 300; Range = 0-3600]

Time interval in seconds during which multiple events with the same event number and instance
Alarm Throttling Interval g0 are suppressed if raised. Avalue of 0 means no throttling is performed.
[Default = 60; Range = 0-300]

Ok Apply Cancel

Figure 51: The Event Template Configuration Screen

DCA Programmer’s Guide, E93198 Revision 01, September 2018 47

CONFIDENTIAL — ORACLE RESTRICTED

9.2.3 General Options Screen

The NO Main Menu=>DCA Framework—->< Application Name>->General Options screen enables
specifying the Perl Subroutines for Diameter Request and Answer, Application State Data TTL, Read
Only U-SBR Access as Guest and Max. U-SBR Queries per Message. See Figure 52.

Main Menu: DCA Framework -> DCA Frame Work Application -> General Options

DCA Application General Options

Perl Subroutine for Diameter Request* process_request

Perl Subroutine for Diameter ANSWer process_answer

Application State Data TTL * 120
Read Only U-SBR Access as Guest
Max. U-SBR Queries per Message* 5

Apply Cancel

Mon Jun 13 06:46:20 2016

[Default = process_request. Range = A 255 character string
Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit] [Avalue is required]

The name of the Perl subroutine to be invoked when a Diameter answer is received
[Default = process_answer. Range = A 255 character string
‘Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit)

The TTL ofthe application state data stored in the U-SBR by the DCA App, in seconds
[Default = 120. Range = 60 - 04800] [A value is required]

If checked the DCA App will be able to access U-SBR DBs owned by other DCA Apps only read-only. Atempts to update or delete such U-SBR DB records will resultin an errer.

If unchecked the DCA App will have full access rights to U-SBR DBs owned by other DCA Apps

Note that if one or more "guest DCA Apps handle application states stored in a U-SBR DB owned by another DCA, unexpected behavior of the DA Apps ar even race conditions may occur if the
business logics of the "quest” and “owner” DCA App are not semantically consistent. A typical restriction in this sense would be for instance that the U-SBR DB records can only be deleted by the DCA
App that created them. Also note that a “guest” DCA App will use its own Application State Data TTL setting for updating the TTL of the U-SBR DB records that it handles. Unexpected behavior of the
DCA Apps or even race conditions may occur if the "guest” and "owner” DCA App have substantially different stateTTLsec settings

[Default = Checked. Range = Ghecked, Unchecked]

Maximum number of SBR Queries a DCA App may send per Diameter message (request or answer). Subsequent U-SBR queries will return an error.
[Default = 5. Range = 1 - 10] [A value is required]

Figure 52: NO General Options

9.2.4 Trial MPs Assignment Screen

The NO Main Menu->DCA Framework-><DCA App Name>->Trial MPs Assignment screen allows
specifying which DA-MPs run the Trial version of the DCA App (see Figure 53). If there is no Trial
version available, the Trial DA-MPs runs the Production version, if there is any available.

If a DCA App version is promoted to the Trial state but no Trial DA-MPs are currently configured
assigned, a warning message displays.

Main Menu: DCA Framework -> DCA Frame Work Application -> Trial MPs assignment

Trial MP assignment

i Available MPs =

Gremlin-DAMP-1
Gremlin-DAMP-3
Gremlin-DAMP-4

Apply Cancel

2 Trial MPs o

3

Gremlin-DAMP-2

=

Figure 53: NO Trial MPs Assignment

DCA Programmer’s Guide, E93198 Revision 01, September 2018 48

CONFIDENTIAL — ORACLE RESTRICTED

9.2.5 Application Control Screen

The NO Main Menu—=>DCA Framework—->< Application Name>->Application Control screen (see
Figure 54) allows:

Listing all application versions configured in the system

Inserting a new application version (via NO New Development Insert Screen)
Copying and modifying an existing application version (via NO New Development Copy Screen)
Exporting an application version entirely (business logic + provisioned data from the NO)
Exporting only the NO provisioned data of an application version

Importing a previously exported application version (business logic + NO provisioned data) (via NO
Import Pop-Up Window).
Importing only the NO provisioned data to an existing application version (via NO Import Pop-Up
Window)

Accessing the application version configuration tables (via NO Tables View Screen)
Accessing business logic and flowchart of an application version (via NO Development Environment

Screen)

Deleting an existing application version

Changing the status of an application version (Development, Trial, Production, Archived)
Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control

Mon Jun 13 07:07:20 2016 EDT

Version Name

DCA_FW_App_v1
DCA_FW_App_v5
DCA_FW_App_v3
DCA_FW_App_vd

dca_fw_app_vl

Error =

Status Comments
Archived firstapp
Development fifth app
Development third app
Development fourth app

Development first-pt2 app

Creation Time

2016-May-20 10:07:53 EDT

2016-May-23 10:23:39 EDT
2016-May-23 10:24:02 EDT

2016-May-23 10:57:55 EOT

Production Time Flowchart Checksum

2016-Jun-09 16:44:44 EDT 800afa59e0fb0f1c1562ce3b627 ccaf

800afa58e0ib0f1c1562ce3b6279ccal

2016-Jun-09 16:34:10 EDT 800afa59e0fo0f1c1562ce30627 Iccaf

800afa59e0fb0f1c1562ce3b627 9ccal

800afa58e0fb0f1c1562ce3b6279ccal

Schema Checksum

d7caf7Bebf5e06e999174260bbd4e85d

fi6cd730fe34b4aef7 1fob3b144a6c07
a610cb96499621dc7a2e54463928e228

oo JomEmIRSSae R e B s, bl

AA BB _CC_v3
DCA_FW_App_v6
DCA_FW_App_v2

RBAR_Lite

i Development : second-pt2 app
Development third-pt2 app
Development fifth-pt2 app
Trial second app

Production

Config Tables and Data Development Environment

Create New Development Copy to New Development

Delete

Make Development

Make Trial Make Production

T
1 2018-May-23 10:58:35 EDT ©
0 i

2016-May-23 11:00:01 EDT
2016-May-23 11:02:23 EDT
2016-May-23 10:20:41 EDT
2016-Jun-03 13:27:40 EDT

SBR DB Name Mapping

.
| B00afa59e0fb0f1c1562ce3b6279ccal
i

800afa58e0fb0f1c1562ce3b6279ccal

800afa59e0fb0f1c1562ce3b627 9ccal

2016-Jun-09 16:37:39 EDT 800afa59e0fo0f1c1562ce30627 Iccaf

2016-Jun-09 16:45:40 EDT ebfbd277205b83e7086c60011d54124

Import:
Business Logic ALevel Config Data
Export
Business Logic AlLevel Config Data Both

Figure 54: NO Application Control

a

0442690951020346529dc5b3a8220002

be0ab3817634b3870e4b8ddE52ef0953

DCA Programmer’s Guide, E93198 Revision 01, September 2018

49

CONFIDENTIAL — ORACLE RESTRICTED

9.2.6 Create New Development Screen

The NO Main Menu—=>DCA Framework-><Application Name>-> Application Control->Create New
Development screen allows creating a new DCA App version with a given name and comments. It is
accessed by clicking Create New Development on the Application Control screen, see Figure 55.

Main Menu: DCA Framework -> Test App Number 4 -> Application Control -> [Create New Development]

Adding a new application version

Field Value Description

Unigue name of the Application Version
Version Name * [Default = n/a; Range = A 32-character string
Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit] [Avalue is required.]

Optional comment.

Comments
[Default = nfa. Range = A 255 character string]

Ok Apply Cancel

Figure 55: NO Create New Development Screen

Currently, there might be up to 10 application versions at a time.

9.2.7 Copy to New Development Screen

The NO Main Menu-->DCA Framework—->< Application Name>->Application Control->Copy to
New Development screen allows copying an entire DCA App version, consisting of business logic (Perl
script, flowchart, and configuration table schemas) and the NO provisioned configuration data, into a new
version. It is accessed by selecting the application version and clicking Copy to New Development on
the Application Control screen, see Figure 56.

Main Menu: DCA Framework -> Test App Number 4 -> Application Control -» [Copy to New Development]

Info -

Info

o ‘ « The version will be copied together with the business logic (tables + flowchart) and A level config data

Unique name of the Application Version
Version Hame * Testappvl [Default = n/a; Range = A 32-character string.
Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit] [A value is required.]

Optional comment

C t:
omments [Default = n/a. Range = A 255 character string]

Ok Apply Cancel

Figure 56: NO Copy to New Development

When the new Application Version is copied, it becomes visible on the Application Control screen
displaying the user provisioned name in the Version Name column and comments in the Comments
column.

The copied Application also includes the business logic (DB tables + Perl script) and the A level (NO
level) configuration data (if any was specified).

DCA Programmer’s Guide, E93198 Revision 01, September 2018 50

CONFIDENTIAL — ORACLE RESTRICTED

9.2.8 Export Pop-Up Window
The exported application version is stored in the form of a JSON file.
DCA Framework GUI offers three export options:

e Export the business logic only (that includes the defined tables, flow control chart, the script, custom
Meals, KPIs, Events associated with the application version, logical to physical SBR Mapping. It
does not include the provisioned data).

e Export the business logic and the configuration data (in addition to the business logic the provisioned
data for the tables is also exported).

e Export the configuration data only.
For the first option, select the application version and click Export Business Logic (becomes enabled
when the row is selected).

For the second option, select the application version and click Export Both (becomes enabled when the
row is selected).

For the third option, select the application version and click Export A Level Config Data (becomes
enabled when the row is selected). The export popup window is illustrated in Figure 57.

i . " R W
Main Menu: DCA Frame Opening Test App Number 4-Testapp4dvl.json -" Iﬁ]
Emor ~ You have chosen to open:

Version Name Status || Test App Number 4-Testapp4vl.json ion Time Flowe
Pommsmmmmmmme g e B | kbbb bbb
| Testapp4v1 : Developa which is: json File (118 bytes) :

I |

from: hittps://100.64.48.200 '
What should Firefox do with this file?

@ Openwith | Browse.
) Save File

Do this autematically for files like this from now on.

Settings can be changed using the Applications tab in Firefox's Options.

| ok || Concel |

Figure 57: NO Export

When the user tries to export the business logic, there is a validation to check whether the flowchart/script
has been compiled. If not, the export is aborted and the error is given.

The A level (NO level) configuration data can be exported from the NO machine, but not from the SO.

9.2.9 Import Pop-Up Window

The NO Import Pop-Up window allows specifying a JSON file from which the business logic (if
required) and the NO provisioned data is imported.

Note: The provisioned data imported to the existing business logic is appended to the existing data
rows.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 51

CONFIDENTIAL — ORACLE RESTRICTED

If the user wants to overwrite the configuration data, it is recommended to first delete all provisioned
rows on the Provision Table screen and then import the new configuration data.

DCA Framework GUI offers three import options:

e Import the business logic only (that includes the defined tables, flow control chart, the script, custom
Meals, KPIs, Events associated with the application version, logical to physical SBR Mapping. It
does not include the provisioned data import; hence, the defined tables are empty after the import).

e Import the business logic and the configuration data (in addition to the business logic the provisioned
data for the tables is also imported).

e Import the configuration data only.
For the first option, click Import Business Logic (always enabled) on the NO Application Control
screen. Leave the checkbox Import also Config data unchecked, see Figure 58. Select the file.

For the second option, click Import Business Logic (always enabled) on the NO Application Control
screen. Check Import also Config data the checkbox. Select the file.

For the third option, select the application version and click Import A Level Config Data (becomes
enabled when the row is selected), see Figure 59. Select the file.

Main Menu: DCA Framework -> Test App Number 4 -> Application Control

Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checksum
| el qTTmmTmsmsemes B eteetetelelele el el telellieiele ittt el AT TTTmTTommsmmmmmsmmmmees e f e
| Testapp4dv i Development | 1+ 2016-Jun-10 09:18:47 EDT . H H

Import business logic
File Browse... | Mo file selected.

Import also config data
Abort on first error:

Import Cancel

Figure 58: NO Import Business Logic

Main Menu: DCA Framework -> Test App Number 4 -> Application Control

Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checksum
e R I e I I S IS
1 Testapp4v1 i Development | 1 2016-Jun-10 09:18:47 EDT | H H

Import config data

File: Browse... | No file selected.
Abart on first error

Import | | Cancel

Figure 59: NO Import Configuration Data

DCA Programmer’s Guide, E93198 Revision 01, September 2018 52

CONFIDENTIAL — ORACLE RESTRICTED

During the import, validations are performed in a particular order to ensure the format of the DCA App
configuration data to be imported is compatible with that of the target DCA App version.

As a result, a number of fatal errors may occur during the import, which forces the import to be aborted
regardless of Abort on first error checkbox. Such fatal errors are:

o File larger than 25MB.

o File has wrong structure or missing data.

o All the errors that happen during the business logic import.

o If the user tries to import the config data to an existing application version, but none of the table
names from the imported file matches the table names of the selected application.

o If the user tries to import the config data to an existing application version, but none of the field
names in the tables from the imported file matches the field names in the tables of the selected
application.

o Level mismatch. A-level DCA Application configuration data can be imported only on the A level.
The same applies to the B level data.

Non-fatal errors, on the other hand, let the user decide whether to abort the import or not (depending on
the value of Abort on first error checkbox).

9.2.10 SBR DB Name Mapping Screen

The NO Main Menu>DCA Framework—->< Application Name>-> Application Control-><Version
Name>->SBR Database Name Mapping View screen (see Figure 60) allows viewing and configuring
the mapping between U-SBR DB logical names (as used in Perl script) and U-SBR DB physical names.
It is accessed by selecting an application version and clicking SBR DB Name Mapping on the
Application Control screen.

Note: All the SBR names referred in the application version script are matched to the SBR physical
names.

Main Menu: DCA Framework -> Test App Number 4 -> Application Control -> Testapp4v1 -> SBR DB Name Mapping

SBR Database Logical Name SBR Database Physical Name

Insertt Edi

Delete

Figure 60: NO SBR DB Name Mapping View

DCA Programmer’s Guide, E93198 Revision 01, September 2018

53

CONFIDENTIAL — ORACLE RESTRICTED

The NO Main Menu->DCA Framework->< Application Name>->Application Control-><Version
Name>->SBR DB Name Mapping Insert screen (see Figure 61) allows creating the new mapping
between U-SBR DB logical names (as used in Perl script) and U-SBR DB physical names. It is accessed
by clicking Insert on the SBR DB Name Mapping View screen.

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -» AA_BB_CC_v3 -> SBR DB Name Mapping -> [Insert]

Mon Jun 13 08:52:

Insert logical-to-physical SER DB mapping

Field Value Description

Logical name of the SBR database as defined in the script
SBR DB Logical Name * [Default = n/a; Range = A 32-character string
Valid characters are alphanumeric and underscore. Must contain atleast one alpha and must not start with a digit] [A value is required]

Ok Apply = Cancel

Figure 61: NO SBR DB Name Mapping Insert

Specify the logical name that is used by the application version script and move the corresponding
physical SBRs to the right list Included SBR Databases.

Each DCA App running on a particular DA-MP monitors the administrative state of the resolved physical
U-SBR DBs and their sub-resource routing state, and updates its own operational state to Unavailable in
any of the following cases:

e The U-SBR DB’s administrative state is not Enabled.

o The U-SBR DB’s administrative state is Enabled but all of its sub-resources are unavailable or are not
reporting.

The Alarm ID 33306 is raised if a logical U-SBR DB name cannot be resolved to a physical U-SBR DB

name (none of the physical U-SBR DBs mapped to a logical U-SBR DB is located in the same Place

Association as the DA-MP performing the resolution). The Alarm ID 33306 is cleared when the logical-
to-physical U-SBR DB resolution process is (re-)triggered.

The NO Main Menu->DCA Framework->< Application Name>-> Application Control-><Version
Name>->SBR Database Name Mapping Edit screen allows editing the mapping between U-SBR DB
logical names (as used in Perl script) and U-SBR DB physical names.

9.2.11 Development Environment

Development Environment is accessed by selecting the application version and clicking Development
Environment on the Application Control screen. The DCA Development Environment (DCA-DE) is
where a custom Diameter application developer can edit, save, check syntax, and compile the application
code for a Diameter Custom Application.

See [1] CGBU_018429 - DCA Framework and Application Activation and Deactivation for more details.

9.2.12 Tables Screen

The NO Main Menu->DCA Framework->< Application Name>->Application Control-><Version
Name>->Tables View screen (see Figure 62) allows:

e Listing all the config tables (NO+SO) defined for an application version

DCA Programmer’s Guide, E93198 Revision 01, September 2018 54

CONFIDENTIAL — ORACLE RESTRICTED

e Inserting/editing a new config table (NO or SO) for the development or trial application version (via
NO Table Insert/Edit Screen).

e Deleting an existing config table (NO or SO) for the development or trial application version

e Viewing an existing config table of an archived or production application version (via NO Table
View Screen).

e Accessing the Provision Table View and Insert/Edit screens (via NO Provision Table View Screen,
NO Provision Table Insert Screen and NO Provision Table Edit Screen).

The Tables View screen is accessed by selecting the application version and clicking Config Tables and
Data on the Application Control screen.

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -=> DCA_FW_App_v2 -> Tables

Table Name Description Single Row Level
table2 MO MO
Insert | | Edit View Delete Provision Table

Figure 62: NO Tables View Screen

Insert, Edit, and Delete are disabled on the Tables View screen for the archived and production
application versions.

View is enabled for the archived and production application versions if the table is selected.
View is disabled for the development and trial application version.

Provision Table is always enabled if the NO table is selected (it is disabled for the SO tables from the
NO GUI).

Table 2 illustrates the access rights for the DCA App configuration schema and data provisioning tables.
The NO/SO DCA database tables (schema) can be created, deleted and modified from the NO GUI for the
development and trial application versions; they can be only viewed for the archived and production
application version. The NO DCA database tables can be provisioned anytime from the NO GUI. The
SO tables cannot be provisioned from the NO GUI.

Table 2: NO GUI tables and configuration data accessibility

The accessibility of level A and level B table schema and content from the NO GUI:

NO GUI
Archived Production Development, Trial

NO tables schema (level A) ro ro rw
NO tables content (level A) rw rw rw
SO tables schema (level A - shares same field as NO

ro ro rw
tables schema)
SO tables content (level B) n/a n/a n/a

ro: read-only
rw: read-write
n/a: not available

DCA Programmer’s Guide, E93198 Revision 01, September 2018 55

CONFIDENTIAL — ORACLE RESTRICTED

The NO Main Menu->DCA Framework->< Application Name>->Application Control-><Version
Name>->Table Insert screen (see Figure 63) allows defining a new configuration table (NO or SO). Itis
accessed by clicking Insert on the Tables View screen for the development and trial application versions.

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -=> AA_BB_CC_v3 -> Tables -> [Insert]

Adding a new table

Field

Table Name *

Description

Single Row

Level

Table Fields *

Field Name

Description

Unique

Mandatory

Data Type

Ok Apply

Value

@ NO
5 80

- Select -

! hdd

Cancel

Description

Unigue name of the Table
[Default = n/a; Range = A 32-character string

Valid characters are alphanumeric and underscore Must contain at least one alpha and must not start with a digit] [A value is required)

Optional Description.
[Default = n/a. Range = A 255 character string].

Indicates ifthe table must have one single row.
[Default=Unchecked. Range= Checked, Unchecked]

Configuration level of the table (NO or SO).
[Default=N0. Range=NO, 50]

Unigue name of the Table Field

Mon Jun 12 09:32:54 201¢

[Default = n/a; Range = A 32-character string. Valid characters are alphanumeric and underscore. Must contain at least one alpha and must not start with a digit]

Optional description.
[Default = n/a. Range = A 255 character string]

Indicates ifthe table field must be unique
[Default=Unchecked Range=Checked, Unchecked]

Indicates ifthe table field must be mandatory.
[Default=Unchecked Range=Checked, Unchecked]

Data Type.
[Default=n/a. Range= Integer, Float, UTF8String,OctetString, IP Address, DiameterURI Diameterldentity, Enumerated, Boolean]

« Integer: Unsigned64/Signed64

« Float [+-number number][e/E[+-Inumber], for example 123 or 1.23e+1

+ UTF85tring

» OctetString: hexadecimal value prefixed with 0x

« |P Address: |Pv4 (decimal numbers separated by a period) /IPvE (RFC4291, section 2.2, form 1 and 2 are supported)
« DiameterURI: "aaa:/" FQDN [port] [transport] [protocol J"aaas:/” FQDM [port] [transport] [protocol), see RFCE733
» Diameterldentity FQDN or Realm, see RFC6733

» Enumerated: Comma separated list of values, which can be separate items (3,b,c) orin form of - (a:1 b:2,c:3)

+ Boolean: trueffalse

Figure 63: NO Tables Insert Screen

Currently, there might be up to 10 configuration tables per application version (NO+SO).

The configuration table definition includes:

e Table Name and Description

o Number of table rows (single vs multiple up to 2000 rows)
e Table level (whether the table resides on the NO or the SO)
e Table Fields (up to 20 now)

Field Name and Description
Whether the field is unique
Whether the field is mandatory
Field Data Type

Field Default value

DCA Programmer’s Guide, E93198 Revision 01, September 2018

56

CONFIDENTIAL — ORACLE RESTRICTED

The table fields can be of the following types (depending on the selected data type, ranges must be also
defined):

e Integer (Range: Min. and Max. values)
e Float (Range: Min. and Max. values)
e UTF8String (Range: Max. length)

e OctetString (Range: Max. length)

e IPaddress

e DiameterURI

e Diameterldentity

e Enumerated (The values)

e Boolean

The NO Main Menu->DCA Framework->< Application Name>->Application Control-><Version
Name>->Table Edit screen allows editing the schema of an existing DCA App configuration table (NO
or SO).

The NO Main Menu>DCA Framework—->< Application Name>-> Application Control-><Version
Name>->Table View (Read-only Insert/Edit) screen allows viewing a DCA App configuration table in
read-only mode. It is accessed when the table is selected and View is clicked on the NO Tables View
screen for the archived and production application version.

9.2.13 Provision Tables Screen

The NO Main Menu->DCA Framework->< Application Name>->Application Control-><Version
Name>->Provision Table View screen (Figure 65) allows:

e Listing all the data rows provisioned for the NO configuration table

e Inserting a new data row to the NO configuration table (via NO Provision Table Insert Screen)

o Editing a data row of the NO configuration table (via NO Provision Table Edit Screen)

e Deleting a data row from the NO configuration table

e Deleting all provisioned rows at once

It is accessed by selecting the table and clicking Provision Table on the Tables View screen, see
Figure 64.

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -» DCA_FW_App_v2 -> Tables

Table Name Description Single Row Level
Parm parm MO MO
e ettt ittt il ettt ettt Bttt a
| table2 NO NO |
L 1 1 1 Jd
v4Table1 210 YES 30

Insert Edit View Delete Frovision Table

Figure 64: Provision Table Button
Provision Table is disabled for the SO tables from the NO GUI, see Table 2.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 57

CONFIDENTIAL — ORACLE RESTRICTED

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -> DCA_FW_App_v2 -> Provision Table

Table: table2

kit ints Ipokipo

Insert | Edit @ Delete Delete All Back

Figure 65: NO Provision Table View Screen

Up to 2000 rows of data can be provisioned per table unless the table has only single row (the Single row
checkbox has been checked on the Table Insert screen).

The NO Main Menu>DCA Framework—->< Application Name>-> Application Control-><Version
Name>->Provision Table Insert screen (see Figure 66) allows inserting a new data row to the NO
configuration table.

Main Menu: DCA Framework -> DCA Frame Work Application -> Application Control -» DCA_FW_App_v2 -> Provision Table -> [Insert]
Tu

Adding a new entry
Table: table2

Field Value Description

Kit * [Awvalue is required]
ints * [Avalue is required]

Ipokipo * [Avalue is required]

0Ok Apply Cancel

Figure 66: NO Provision Table Insert Screen
During the data insert, the GUI performs the following validations:

e Whether the mandatory value is present

e Whether the unique value is unique

e Whether the maximum of data rows is reached

o Whether the data inserted corresponds to the specified field data type

e Whether the data inserted is between the specified min-max range for the field

e Whether the entered sting value is no longer than the allowed maximum for the field

o Whether the entered enumerated value is within the allowed range of enumerated values for the field
e Eftc.

The NO Main Menu->DCA Framework->< Application Name>->Application Control-=><Version
Name>->Provision Table Edit screen allows editing a data row of the NO configuration table.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 58

CONFIDENTIAL — ORACLE RESTRICTED

9.3 SO Screens

The DCA Framework left hand menu on the SO includes the following screens:

Configuration Screen (NO screen, read-only on the SO)

Each activated application is represented by the separate menu folder with the given application name.
The application folder on the NO includes the following screens (Application Control screen contains the
buttons that lead to other DCA screens):

Custom Meals (NO screen, read-only on the SO)

General Options Screen (NO screen, read-only on the SO)

Trial MPs Assignment Screen (NO screen, read-only on the SO)
Application Control Screen

Import Pop-Up Window

Export Pop-Up Window

SBR Database Name Mapping (NO screen, read-only on the SO)

Development Environment (NO screen, read-only on the SO)

Tables Screen (NO screen, read-only on the SO, except for View and Provision Table)
e Provision Tables Screen

System Options Screen
[=] ‘3 DCA Framework
[£] Configuration
[=] ‘=3 DCAFrame Work Application
[Custom MEALs
[z| General Options
[Trial MPs assignment
[Application Control
["i"‘] Systemn Options
[+] 2] Kiran Test Application
[+] [Test App Mumber 4

Figure 67: SO Screens

9.3.1 Application Control Screen

The SO Main Menu->DCA Framework->< Application Name>-> Application Control screen (see
Figure 68) allows:

Listing all application versions configured in the system
Exporting only the SO provisioned data of an application version (via SO Export Pop-Up Window)

Importing only the SO provisioned data to an existing application version (via SO Import Pop-Up
Window).

Accessing the application version configuration tables (via SO Tables View Screen)

Accessing the flowchart and business logic of an application version (via development environment,
read-only)

DCA Programmer’s Guide, E93198 Revision 01, September 2018

59

CONFIDENTIAL — ORACLE RESTRICTED

Main Menu: DCA Framework -> First Dca Appl -> Application Control

Tue]

Version Name Status Comments Creation Time Production Time Flowchart Checksum Schema Checl
| et et ettt ettt ettt ettt tetiits Enfiefieidediefie ettt ettt ettt Rttt
| Version 1 Trial H 1 2016-Jun-01 14:12:56 EDT 1 c0adbb8b5cd7ala36d237e5d135f3685 |
i i i i i i i
4

Config Data Development Environment SBR DB Name Mapping Import: | B Level Config Data

Export | B Level Config Data
Figure 68: SO Application Control Screen
9.3.2 Export Pop-Up Window

The B level (SO level) configuration data can be exported from the SO machine, but not from the NO.

To export the configuration data to a JSON file, select the application version and click Export B Level
Config Data (becomes enabled when the row is selected).

9.3.3 Import Pop-Up Window

The SO Import Pop-Up window allows specifying a JSON file from which the SO provisioned data is
imported.

Note: The provisioned data imported to the existing business logic is appended to the existing data
rows.

If the user wants to overwrite the configuration data, it is recommended to first delete all provisioned
rows on the Provision Table screen and then import the new configuration data.

The B level (SO level) configuration data can be imported only to the SO machine.

To import the configuration data from the JSON file, select the application version and click Import B
Level Config Data (becomes enabled when the row is selected). Select the file.

9.3.4 Tables Screen

The SO Main Menu->DCA Framework->< Application Name>-> Application Control-><Version
Name>->Tables View screen (see Figure 69) allows:

o Listing all the config tables (NO+SQ) defined for an application version
e Viewing an existing config table (via NO/SO Table View Screen)

DCA Programmer’s Guide, E93198 Revision 01, September 2018 60

CONFIDENTIAL — ORACLE RESTRICTED

e Accessing the Provision Table View and Insert/Edit screens (via SO Provision Table View Screen,

SO Provision Table Insert screen and SO Provision Table Edit Screen).

The SO Tables View screen is accessed by selecting the application version and clicking Config Data on

the SO Application Control screen.

Main Menu: DCA Framework -> First Dca Appl -> Application Control -> Version1 -> Tables

Table Name Description Single

Insert Edit View Delete Provision Table

Figure 69: SO Tables View Screen (empty)
Insert, Edit, and Delete are disabled on the SO Tables View screen.
View is enabled if the table is selected.

Provision Table is always enabled if the NO/SO table is selected.

Row Level

Table 3 illustrates the access rights for the DCA App configuration schema and data provisioning tables
on the SO. The NO/SO DCA App table schemas can only be viewed. The level A DCA App
configuration tables content can only be view from the SO GUI. The level B DCA App configuration

tables can be provisioned.
Table 3: SO GUI tables and Configuration Data Accessibility

The accessibility of level A and level B table schema and content from the SO GUI:

SO GUI
Archived Production Development, Trial

ro ro ro
NO tables schema (level A) (replicated) (replicated) (replicated)

ro ro ro
NO tables content (level A) (replicated) (replicated) (replicated)
SO tables schema (level A - shares same field ro ro ro
as NO tables schema) (replicated) (replicated) (replicated)
SO tables content (level B) rw rw rw

ro: read-only
rw: read-write
n/a: not available

The SO Main Menu->DCA Framework->< Application Name>-> Application Control-><Version
Name>->Table View (Read-only Insert/Edit) screen allows viewing a configuration table in read-only
mode. It is accessed when the table is selected and View is clicked on the SO Tables View screen.

9.3.5 Provision Tables Screen

The SO Main Menu->DCA Framework->< Application Name>-> Application Control-><Version

Name>=>Provision Table, View screen allows:

o Listing all the data rows provisioned for the SO-rooted DCA App configuration table.

DCA Programmer’s Guide, E93198 Revision 01, September 2018

61

CONFIDENTIAL — ORACLE RESTRICTED

e Inserting a new data row to the SO-rooted DCA App configuration table (via SO Provision Table
Insert Screen).

o Editing a data row of the SO-rooted DCA App configuration table (via SO Provision table Edit
Screen).

o Deleting a data row from the SO-rooted DCA App configuration table.
o Deleting all provisioned rows at once.

Note: The NO-rooted DCA App configuration tables, as well as the schema definitions of both the NO-
rooted and SO-rooted DCA App configuration tables are accessible on the SO only in read-only
mode.

The SO Provision Table View screen is accessed by selecting the table and clicking Provision Table on
the SO Tables View screen.

The SO Main Menu->DCA Framework-><Application Name>->Application Control-><Version
Name>->Provision Table, Insert screen allows inserting a new data row to the SO-rooted DCA App
configuration table.

The SO Main Menu>DCA Framework->< Application Name>-> Application Control=><Version
Name>->Provision Table, Edit screen allows editing a data row of the SO-rooted DCA App
configuration table.

9.4 System Options

System Options screen is present on the SO only. See Figure 70- Figure 74.
System Options screen enables the configuration of the DSR application parameters that are:

e Relevant to the operational status Unavailable. These options allow you to specify the behavior when
the application state is Unavailable (Main Menu: Diameter->Maintenance->Applications). The
possible behavior is:

e Continue Routing
e Use default route + specify application unavailable route list
o Send Answer with Result-Code AVP + specify Result-Code and Error Message

e Send Answer with Experimental-Result AVO + specify Result-Code, Error Message, and
Vendor-Id.

Application unavailable configuration
@ Continue Routing
Default Route
Send Answer with Result-Code AVP
Send Answer with Experimental-Result AvP

Application Unavailable Action Action to be taken when the application is unavailable to process messages

Ifthe Unavailability Action is "Default Route” and the application is not available, the requests will be routed

M E DTS ETRE BRI using this Route List and Peer Routing Rules will be bypassed

The Result-Code or Experimental-Result-Code value to be returned in an Answer message when a

3002 UNABLE TO_DELIVER message is not successfully routed because of the application being unavailable. If Vendor-Id is

B L = configured, this value is encoded as Experimental-Result-Code AVP else Result-Code AVP.

I [Default = 3002; Range = 1000 - 5999]

The Error-Message AVP value to be returned in an Answer message when a message is not successfully
Application Unavailable Error Message |Application Unavailable routed because of the application being unavailable.
[Default = "Application Unavailable™, Range = 0 to 64 characters]

" . T l— The Vendor-d AVP value to be returned in an Answer message when a message is not successfully routed
SO T SR e = because of the application being unavailable. [Default = n/a; Range = 1 - 4294967295]

Figure 70: System Options for the Unavailable Operation Status

DCA Programmer’s Guide, E93198 Revision 01, September 2018 62

CONFIDENTIAL — ORACLE RESTRICTED

e Relevant to the case when the DRL resources are exhausted. The behavior is to send an error
message with the specified Result-Code, Error Message, and Vendor-I1d.

@ 3004 TOO BUSY |L| The Result-Code or Experimental-Result-Code value to be returned in an Answer message when a
—! . message is not successfully routed because of internal resource being exhausted. If Vendor-Id is
l— configured, this value is encoded as Experimental-Result-Code AVP else Result-Code AVP.
[Default = 3004; Range = 1000 - 5999]

Resource Exhaustion Result-Code

The Error-Message AVP value to be returned in an Answer message when a message is not successfully
Resource Exhaustion Error Message Application Resource Exhaust routed because of internal resource being exhausted.
[Default = "Application Resource Exhausted™, Range = 0 to 64 characters]

The Vendor-Id AVP value to be returned in an Answer message when a message is not successfully routed
Resource Exhaustion Vendor-ld because of internal resource being exhausted
[Default = nia; Range = 1 - 4204967 295]

Figure 71: System Options for the Exhausted DRL Resources

¢ Relevant to the run-time error. These options allow to specify the behavior in case of a run-time
error. Runtime errors fall into two categories:

o Perl specific runtime errors — e.g., division by zero, a “die” statement, calling an undefined
(utility, not event handler) subroutine etc.

e Runtime errors triggered by the DCA framework — e.g., invoking an event handler that does not
exist or exceeding the maximum configured number of executed opcodes.

The possible behavior is:

e Continue Routing
e Discard
o Send Answer with Result-Code AVP + specify Result-Code and Error Message

e Send Answer with Experimental-Result AVO + specify Result-Code, Error Message, and
Vendor-Id.

Field Value Description
Run-time error configuration

@/Continue Routing
- Discard 5 - - 3
Run-Time Error Action S s e EE e T Action to be taken when the DSR application experiences a run-time error.

Send Answer with Experimental-Result AVP

- N . The Result-Code or Experimental-Result-Code value to be returned in an Answer message when a
3002 UNABLE_TO_DELIVER message is not successfully routed because of the application run-ime error. If Vendor-ld is configured,
l— this value is encoded as Experimental-Result-Code AVP else Result-Code AVP.
[Default = 3002; Range = 1000 - 5398]

Run-Time Error Result-Code

The Error-Message AVP value to be returned in an Answer message when a message is not successfully

Run-Time Error Message Fl.m-T\mE Error routed because of the application run-time error.

[Default = "Run-Time Error”; Range = 0 to 64 characters]

The Vendor-ld AVP value to be returned in an Answer message when a message is not successfully routed

Rune-Time Error Vendor-ld because of the application run-time error.

[Default = n/a; Range = 1- 4294967295]
Figure 72: System Options for the Run-Time Error

¢ Realm and FQDN that are placed in Answer message generated by the DCA. These are the values
that are placed in the Origin-Realm and Origin-Host AVPs of the Answer message generated by
DCA. If they are not configured, local node Realm and FQDN for the egress connection are used.

Configuration for the DCA generated Answer

Value to be placed in the Origin-Realm AVP ofthe Answer message generated by DCA. If not configured,
local node Realm for the egress connection is used.
Realm is a case-insensitive string consisting of a list of labels separated by dots, where a label may
Realm contain letters, digits, dashes (') and underscore (_"). A label must start with a letter, digit or underscore
and must end with a letter or digit. Underscores may be used only as the first character. A label must be at
maost 63 characters long and a Realm must be at most 255 characters long.
Fully Qualified Domain Name is required to configure Realm
[Default = nfa; Range = Avalid Realm.]

Value to be placed in the Origin-Host AVP of the Answer message generated by DCA. If not configured, local
node FQDN for the egress connection is used

FQDN is a case-insensitive string consisting of a list of Iabels separated by dots, where a label may
contain letters, digits, dashes () and underscore (_’). A label must start with a letter, digit or underscore
and must end with a letter or digit. Underscores may be used only as the first character. A label must be at
maost 63 characters long and a FQDM must be at most 255 characters long.

Realm is required to configure Fully Qualified Domain Mame

[Default = nfa; Range = Avalid FQDN]

Fully Qualified Domain Name

Figure 73: System Options for the Realm and FQDN

DCA Programmer’s Guide, E93198 Revision 01, September 2018 63

CONFIDENTIAL — ORACLE RESTRICTED

e Application invocation. This option is needed to indicate if the subsequent invocation of application
on a different node in the network is allowed or not.

If unchecked, the DSR-Application-Invoked AVP is inserted, preventing the same DSR application
on another DSR node from receiving the Diameter message.

Application invocation
If checked, subsequentinvocation of DCA Framework Application on a different node in the network is
allowed.

Allow Subsequent Application Invocation If unchecked, the DSR-Application-Invoked AVP will be inserted, preventing the same DSR application on
another DSR node from receiving the Diameter message
[Default=Unchecked. Range=Checked, Unchecked]

Figure 74: System Options for the Application Invocation
10. Development Environment Overview

10.1 Development Environment Modes

DCA Development Environment opens if the user clicks Development Environment on the Main
Menu->[Application Name]->Application Control screen. Development Environment is disabled if
the Application Control: Script and Flow Control Chart DCA Framework View Permission is
unchecked.

The DCA Development Environment can be accessible in two modes of operation:

o Edit Mode (any change is possible and can be saved)

e View Mode (the Code Text Editor is read-only, Toolbox and Action commands are disabled, the
Flow Control Chart interactions are disabled)

The DCA DE can be accessible in the View only mode for the following cases:

o If the selected application version is either in Production or Archived status.

o If the Application Control: Script and Flow Control Chart DCA Framework Edit Permission is
unchecked while the View Permission is checked.

DCA DE starts, but does not retrieve the Perl code and Flow Control Chart data if the View Permission
is unchecked.

The DCA DE can be accessible in the Edit mode for the following cases:

o If the selected application version is either in Development or Trial status and the Application
Control: Script and Flow Control Chart DCA Framework Edit Permission is checked.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 64

CONFIDENTIAL — ORACLE RESTRICTED

10.2 Layout

The DCA Development Environment GUI Layout contains a top banner and the following sections, see
Figure 75 and Figure 76:

Application Banner

>

Q

==

3

= Code Text
Editor

Flow Control

- Chart

©

c

©

£

£

o

()

5 Commands

ks Qutput

<

Figure 75: Layout Structure

. Version Status: Development

ORACLE’ bca Development Environment [KK test app, v1 |

- 100%

IE < >aAa v @ @8 Fie v Edit v ExecBlocks v Fil Resize

-

(=)

¢

B

=

Output Fit Resize

Figure 76: Layout Print Screen
The Application Banner displays the application version name and status.

The Toolbox displays the available commands for creating Flow Control Chart symbols: Create Exec
Block, Create Async Call, Create Termination, Create Connection, see Figure 77.

The Action Commands display the available commands for managing the application code and Flow
Control Chart: Render Chart, Save, Check Syntax, Compile, see Figure 77.

The Flow Control Chart displays the Flow Control Chart illustration of the application code structure.
The Code Text Editor displays the application code.

The Commands Output displays output messages from Action Commands.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 65

CONFIDENTIAL — ORACLE RESTRICTED

Create Exec Block
- Create Async Call

O Create Termination

Create Connection

Render Chart

Save

({0

Check Syntax

Compile
Figure 77: Toolbox and Actions

10.3 Code Text Editor

The Code Text Editor includes the drop-down menus File, Edit, Exec Blocks and a Fit Resize button.

File = Edit « Exec Blocks « Fit Resize

Figure 78: Code Text Editor
The File drop-down menu contains the following commands:

e Open (for uploading the Perl script from the selected file)

e Save (for saving the Perl script as a file)

The Exec Blocks drop-down menu contains all executions blocks present on the Flow Control Chart,
providing navigation of code subroutines.

The Edit drop-down menu contains the following commands:

e Undo (the command erases the last change in the code, revert it to an older state)
e Redo (the command reverses the undo)

e Find/ Replace (the command searches for a specified text and when found, replace it with another
specified text).

The application code consists of:

o Internal variable declarations

e The main subroutine

e Other referenced subroutines (if any)

The Code Text Editor provides automatic text markers that cause parts of the Perl code to be distinctively
highlighted to the user for the following code elements:

e Perl subroutines

o DCA API asynchronous calls

o DCA API termination calls

e DCA API call

DCA Programmer’s Guide, E93198 Revision 01, September 2018 66

CONFIDENTIAL — ORACLE RESTRICTED

10.4 Flow Control Chart

The Toolbox commands are used to add symbols and connections to the Flow Control Chart area to
illustrate the flow of control between executions blocks and asynchronous calls for the application.

The symbol can be added to the Flow Control Chart area or adjusted by dragging the symbol to the
desired location. The connection is maintained during dragging.

The Render Chart action command renders a new Flow Control Chart from the application code in
the Code Text Editor.

The Save action command saves the chart data along with the application code.

There is a pan and zoom control panel above the Flow Control Chart for adjusting the location and
scale of the visible chart boundaries to reveal hidden chart content.

The symbol selected in the Flow Control Chart area becomes highlighted. Selecting the symbol in the
Flow Control Chart area causes the Code Text Editor to select the code associated with the symbol
and to scroll the selected code into view.

The start of the connection line is marked by the circle representing an exit from a previous symbol,
and the other end of the line marks an entry to a symbol.

10.4.1 Start Symbol

Start symbol is automatically created by the Render Chart action command. Start symbols are
connected to the Execution Block symbols for the request and answer subroutines specified on the
Application General Options screen (Section 9.2.3).

If the subroutine names are not yet configured, or the configured names do not match any subroutines
in the code, Start symbols are rendered in the chart with no connections and are marked with
validation errors.

Selecting the Start symbol causes the Code Text Editor to scroll to the first line of code for the
connected Execution block.

10.4.2 Execution Block Symbol

The name of an Execution Block symbol is also the name of the subroutine.

An Execution Block has one entry connection, which can proceed from one of the following symbols:
Start, execution Block, or Async Call.

An Execution Block has one or more exit connections to any of the following symbols: Execution
Block, Termination, or Async Call.

Selecting the Execution Block symbol causes the Code Text Editor to select the code for the
associated subroutine and scroll it into view.

10.4.3 Asynchronous Call Symbol

The Asynchronous Call symbol displays the name of the asynchronous function that is invoked.
An Async Call symbol always has an entry connection from an Execution Block Symbol.
Note: A symbol inserted by the user with no connections is ignored.

An Async Call symbol always has an exit connection to an Execution Block that has a name, which
matches the callback subroutine name input parameter to the asynchronous call.

Selecting the Async Call symbol displays the asynchronous function call statement in the Code Text
Editor.

DCA Programmer’s Guide, E93198 Revision 01, September 2018

67

CONFIDENTIAL — ORACLE RESTRICTED

10.4.4 Termination Symbol

The Termination symbol displays a final action name that corresponds to an occurrence of a
termination call in the Execution Block connected to the Termination symbol.

The allowed final action names are Forward, Drop, Answer.
A Termination symbol can only have an entry connection and no exit connection.
A Termination symbol can only be connected to the exit of an Execution Block symbol.

Selecting the Termination symbol displays the code statement for the final action in the Code Text
Editor.

10.4.5 Delete symbol from the Flow Control Chart

Right-clicking the symbol or connection in the Flow Control Chart area causes a hidden menu to be
displayed.

The menu associated with every chart symbol and connection displays the following commands:

o Delete (selecting this command deletes the symbol or connection from the Flow Control Chart)

Delete is enabled only for symbols/connections created using the Toolbox commands and that are
not yet associated to the code.

Note: Symbols and connections created using the Render Chart cannot be deleted because they
are associated with code in the Code Text Editor. The associated code must be deleted
first, and then Render Chart can update the Flow Control Chart to reflect the deletion.

e Rename (selecting this command enables renaming the symbol).

Note: Rename displays only for the exec, async, and termination blocks and not for
connections.

10.4.6 Flow Control Chart Validation

The Flow Control Chart validation (validation errors show up and/or clear) is triggered by the
following events:

e A new chart is rendered by the Render Chart command
e Right as a change is made

The Flow Control Chart Validation finds errors in the structure of the application code before the
Compile action command is clicked.

An error icon is displayed beside each chart symbol name that has a validation error.
Hovering over the error icon of a symbol displays the validation error message for the symbol.
Existing validation errors are cleared at the start of validation.

The Flow Control Chart validates each Start symbol is connected to a single Execution Block.
Otherwise, the Start symbol has no Execution Block connection error displays.

The Flow Control Chart validates the Execution Block connected to a Start symbol has an exit
connection that directly or indirectly leads to a Termination symbol. Otherwise, the Starting
Execution Block exit connection does not lead to a direct or indirect Termination error displays.

The Flow Control Chart validates each Async Call connects to a post-processing Execution Block.
Otherwise, the Async Call has no connection to a post-processing Execution Block error displays.

Note: This error message occurs when the Async Call statement in the code references a post-
processing subroutine that does not exist.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 68

CONFIDENTIAL — ORACLE RESTRICTED

10.4.7 Command Output Area

e The output messages from the action commands are displayed in the Command Output text area.

¢ When the Command Output text area gets full, the oldest text lines are removed to make room for the
new lines.

e The Command Output text area is able to display a maximum of 500 lines of text.

e The Save, Check Syntax, and Compile action commands produce log events in the system log where
DSR stores all GUI log events.

e Each log event includes the user, app 1D, app hame, app version, and action command name.

10.4.8 Render Chart

e The Render Chart action command analyzes the current application code and create a new Flow
Control Chart to depict the code.

e The command output of the Render Chart action command reads “Rendering Chart...” and “Render
Chart done”.

e The Render Chart action command renders chart symbols on detecting subroutines, asynchronous
calls and termination calls in the application code.

e The detection of a subroutine declaration works on the following coding convention:

The declaration of a subroutine name and opening brace appear on the same line. The closing brace
for the subroutine appears alone on a separate line. Example:

Perl language example
sub process request {
Code statements here .

}
e The detection of an asynchronous call declaration works on the following coding convention:

For an asynchronous call statement the logical database name input argument must be passed as a
literal string (quoted text) — not a variable or expression.

e For an asynchronous call statement, the callback input argument is the name of the post-processing
subroutine where execution continues after the asynchronous call. The callback input argument must
be passed as a literal string (quoted text) — not as a subroutine reference. For example:

Perl language example
sub process request {
Asynchronous call
dca::sbr::sbrinstance ("sbrDB")->read (
$subscription type, # key type
$subscription key, # key value
"read result" # callback to process result
);
}

10.4.9 Save

e The Save action command is enabled in Edit Mode if the current known Application State is
Development or Trial.

e The Save action command saves the application code and Flow Control Chart to the system database.

e The command output of the Save action command reads “Saving...” and “Save done”.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 69

CONFIDENTIAL — ORACLE RESTRICTED

10.4.10 Check Syntax

The Check Syntax action command makes the Perl interpreter check the syntax of the last saved code
and report any syntax errors.

The Check Syntax action command is enabled in Edit Mode if the current known Application State is
Development or Trial and the application code and chart have been saved.

Click Check Syntax to retrieve the latest application data and compare current application data.

10.4.11 Compile

The Compile action command compiles the application code and is enabled in Edit mode if the
current known Application State is Trial, and this action command has not been run since the last
Check Syntax Action command was executed.

The command output of the Compile action command reads “Compiling...” and “Compile done”.

10.5 Race Conditions

If multiple users are changing the application version code/flowchart simultaneously, only the first
one is able to submit the changes (commands Save, Check Syntax, Compile). If the rest are trying to
submit the changes, the flowchart checksum validation fails and they would not be able to overwrite
the code/flowchart in the database.

If the Save action command is clicked while the current application state is Development or Trial, and
the last-saved checksum has changed, saving is aborted and the error message displays:

"Action command 'Check Save' aborted. A newer version of the application
code and Flow Control Chart has been saved in the system.

Select OK to overwrite the latest saved data.
Select Cancel to close without overwriting."

If the user confirms, overwrite the latest version of the code and Flow Control chart with the current
application data.

If the Check Syntax action command is clicked while the current application state is Development or
Trial, and the last-saved checksum has changed, checking syntax is aborted and the error message
displays:

"Action command 'Check Syntax' aborted. A newer version of the
application code and Flow Control Chart has been saved in the system.

Select OK to overwrite the latest saved data.
Select Cancel to close without overwriting."

If the user confirms, overwrite the latest version of the code and Flow Control chart with the current
application data.

If the Compile action command is clicked while the current application state is Trial, and the last-
saved checksum has changed, compiling is aborted and the error message displays:

“Action command ‘compile’ aborted. A more recent version of the code and
Flow Control Chart exists. Do you want to overwrite the current code and
Flow Control chart with the latest data?”

If the user confirms, overwrite the latest version of the code and Flow Control chart with the current
application data.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 70

CONFIDENTIAL — ORACLE RESTRICTED

If multiple users are working with the application version, and there is an attempt to submit the
code/flowchart changes (commands Save, Check Syntax, Compile) while the application state has
changed and now is inappropriate for the code/flowchart update, the error occurs. (The web
application running in the browser polls the web server every 10 seconds to get the latest application
data and check for an application state change. The enabled/disabled state of Save/Check
Syntax/Compile is only accurate within a 10 seconds time window).

If Save is clicked while the current application state is Production or Archived, saving is aborted and
the error message displays:

"Action command 'Save' aborted. The Application Version Status has
changed from '<state>' to '<state>' which is invalid for the action
command. "

A confirmation dialog box displays with Ok and Cancel and the following text:
"The Application Version Status has changed from '<state>' to '<state>'.

You will now be switched to View Mode and will not be able to save
changes.

Select OK to load and view the latest saved data.
Select Cancel to continue viewing the current data."
If the user confirms, the current code and Flow Control chart is overwritten with the latest data.

If the Check Syntax action command is clicked while the current application state is Production or
Archived, checking syntax is aborted and the error message displays:

"Action command 'Check Syntax' aborted. The Application Version Status
has changed from '<state>' to '<state>' which is invalid for the action
command."

A confirmation dialog box displays Ok and Cancel and the following text:
"The Application Version Status has changed from '<state>' to '<state>'.

You will now be switched to View Mode and will not be able to save
changes.

Select OK to load and view the latest saved data.
Select Cancel to continue viewing the current data."
If the user confirms, overwrite the current code and Flow Control chart with the latest data.

If the Compile action command is clicked while the current application state is Development,
Production or Archived, compiling is aborted and the error message displays:

"Action command 'Compile' aborted. The Application Version Status has
changed from '<state>' to '<state>' which is invalid for the action
command. "

DCA Programmer’s Guide, E93198 Revision 01, September 2018 71

CONFIDENTIAL — ORACLE RESTRICTED

11. APIs

This chapter documents the various APIs available to a DCA App programmer.

11.1 The EDL API
11.1.1 API to Manipulate the Diameter Header

Purpose: Retrieve the Diameter message object needed for subsequent operations on the Diameter
message header and body.

Prototype:
my Smsg = diameter::Param::message (Sparam) ;

where sparam is a default parameter provided by all the event handlers and may be retrieved with:
my Sparam = shift;

Purpose: Read the Diameter version number in the Diameter header.

Prototype:
my $ver = diameter::Message::version (Smsqg);

where $ver is undef in case of failure (e.g., wrong object passed in smsg) or the Diameter version
number if success.

Purpose: Set the Diameter version number in the Diameter header.
Prototype:
Serr = diameter::Message::setVersion (Smsg, S$ver);

where $err isundef in case of failure (e.g., wrong object passed in $msg) or a non-zero value in case
of success.

Purpose: Return the length (as number of bytes) of the Diameter message.
Prototype:
my $len = diameter::Message::messagelLength (Smsqg) ;

where $1en is undef in case of failure (e.g., wrong object passed in smsg) or the length of the Diameter
message if success

Purpose: Read the Command Flags of the Diameter message.
Prototype:
my $cmdFlags = diameter::Message::commandFlags (Smsqg) ;

where scmdFlags IS undef in case of failure (e.g., wrong object passed in smsg) or the Command Flags
if success.

Purpose: Read the Request flag of the Diameter message.
Prototype:
my $r = diameter::Message::isRequest (Smsqg);

where $ris 1 if the Request flag is set, O if the Request flag is not set, or undef if error (e.g., wrong
object passed in $msg).

DCA Programmer’s Guide, E93198 Revision 01, September 2018 72

CONFIDENTIAL — ORACLE RESTRICTED

Purpose: Read the Diameter Proxiable flag in the Diameter header.
Prototype:
my $p = diameter::Message::isProxiable ($msqg) ;

where sp is 1 if the Proxiable flag is set, O if the Proxiable flag is not set or undef£ if error (e.g., wrong
object passed in smsg).

Purpose: Set (set to 1) the Diameter Proxiable flag in the Diameter header.
Prototype:
Serr = diameter::Message::setProxiable (Smsgqg) ;
where serr is undef if error (e.g., wrong object passed in $msg) or a non-zero value if success.
Purpose: Clear (set to 0) the Diameter Proxiable flag in the Diameter header.
Prototype:
Serr = diameter::Message::clearProxiable ($msq) ;
where serr is undef if error (e.g., wrong object passed in $msg) or a non-zero value if success.
Purpose: Read the Diameter Error flag in the Diameter header.
Prototype:
my $Se = diameter::Message::isError ($Smsq)

where $e is 1 if the Error flag is set, 0 if the Error flag is not set or undef if error (e.g., wrong object
passed in $msg).

Purpose: Set (set to 1) the Diameter Error flag in the Diameter header.
Prototype:
Serr = diameter::Message::setError ($Smsqg);
where serr is undef if error (e.g., wrong object passed in $msg) or a non-zero value if success.
Purpose: Clear (set to 0) the Diameter Error flag in the Diameter header.
Prototype:
Serr = diameter::Message::clearError ($Smsqg) ;
where serr is undef if error (e.g., wrong object passed in $msg) or a non-zero value if success.
Purpose: Read the Diameter Retransmission flag in the Diameter header.
Prototype:
my St = diameter::Message::isRetransmission (Smsgqg);

where st is 1 if the Retransmission flag is set, O if the Retransmission flag is not set or unde £ if error
(e.g., wrong object passed in $msg).

Purpose: Set (set to 1) the Diameter Retransmission flag in the Diameter header.
Prototype:
Serr = diameter::Message::setRetransmission ($msqg) ;

where $err isundef if error (e.g., wrong object passed in $msg) or a non-zero value if success.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 73

CONFIDENTIAL — ORACLE RESTRICTED

Purpose: Clear (set to 0) the Diameter Retransmission flag in the Diameter header.
Prototype:

Serr = diameter::Message::clearRetransmission ($msqg) ;
where serr is undef if error (e.g., wrong object passed in $msg) or a non-zero value if success.
Purpose: Read the Diameter 4" reserved bit of the Command Flags in the Diameter header.
Prototype:

my $Sr4 = diameter::Message::isReservedBit4 (Smsq) ;

where st is 1 if the 4™ bit in the Command Flags flag is set, 0 if the bit is not set or undef if error (e.g.,
wrong object passed in $msg).

Purpose: Set (set to 1) the Diameter 4™ reserved bit of the Command Flags in the Diameter header.
Prototype:

Serr = diameter::Message::setReservedBit4 ($msg) ;
where serr is undef if error (e.g., wrong object passed in $msg) or a non-zero value if success.
Purpose: Clear (set to 0) the Diameter 4™ reserved bit of the Command Flags in the Diameter header.
Prototype:

Serr = diameter::Message::clearReservedBit4 ($Smsq) ;
where $err is undef if error (e.g., wrong object passed in $msg) or a non-zero value if success.

Purpose: Read/Set/Clear the Diameter 5" 6™ and 7" reserved bit in the Command Flags in the Diameter
header.

Prototype:

See three examples above where the Bit4 suffix in the function names is accordingly replaced by
Bit5, Bit6, and Bit7, respectively.

Purpose: Read the Diameter Command Code in the Diameter header.
Prototype:
my S$Scmd = diameter::Message::commandCode (Smsqg) ;

where $cmd is undef if error (e.g., wrong object passed in smsg) or contains the Command Code if
success.

Purpose: Set the Diameter Command Code in the Diameter header.
Prototype:
Serr = diameter::Message: :setCommandCode ($Smsg, S$cmd) ;
where serr is undef if error (e.g., wrong object passed in $msg) or a non-zero value if success.
Purpose: Read the Diameter Application-ID in the Diameter header.
Prototype:

my SapplId = diameter::Message::applicationId(Smsqg);

DCA Programmer’s Guide, E93198 Revision 01, September 2018 74

CONFIDENTIAL — ORACLE RESTRICTED

where $appId isundef if error (e.g., wrong object passed in smsg) or contains the Application-1D if
success.

Purpose: Set the Diameter Application-1D in the Diameter header.
Prototype:
Serr = diameter::Message::setApplicationId($msg, SappId);
where $err is undef if error (e.g., wrong object passed in $msg) or a non-zero value if success.
Purpose: Read the Diameter Hop-by-Hop Identifier in the Diameter header.
Prototype:
my $hbh = diameter::Message: :hopByHopId ($msg) ;

where shbh is undef if error (e.g., wrong object passed in smsg) or contains the Hop-by-Hop Identifier
if success.

Purpose: Set the Diameter Hop-by-Hop Identifier in the Diameter header.
Prototype:
Serr = diameter::Message: :setHopByHoplId ($Smsg, $hbh);
where serr is undef if error (e.g., wrong object passed in $msg) or a non-zero value if success.
Purpose: Read the Diameter End-to-End Identifier in the Diameter header.
Prototype:
my $err = diameter::Message::endToEndId ($msgq);

where $err is undef if error (e.g., wrong object passed in $msg) or contains the End-to-End Identifier if
success.

Purpose: Set the Diameter End-to-End Identifier in the Diameter header.

Prototype:

Serr = diameter::Message::setEndToEndId (Smsg, S$ele);

where serr is undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

11.1.2 API to Manipulate the Diameter AVPs
Purpose: Read from a Diameter message the value of an AVP identified by name and instance number.
Prototype:

my $val = diameter::Message::getAvpValue ($msg, $avp name [,
Sinstancel]) ;

The return values are:

e undef if $instanceisO.

e undef if there are less instances of the AVPin the Diameter message than the $instance value or
an AVP with the specified name does not exist in the Diameter message or the AVP name is not
specified in the AVP Dictionary.

e The value of the $instance-th instance of the AVP (starting from 1).
e The value of the first instance of the AVP if $instance has been omitted.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 75

CONFIDENTIAL — ORACLE RESTRICTED

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp 0bject or the
other parameters (if any) are undef.

Purpose: Add at the end of the Diameter message an AVP identified by name and value.
Prototype:
my Serr = diameter::Message::addAvpValue ($msg, $avp name, Savp val);
The return values are:
e Non-zero in case of success.
e undef if the AVP name does not exist in the AVP Dictionary.
e undef if the AVP name exists in the AVP Dictionary.
e undef if the AVP value cannot be converted to the AVP data type specified in the AVP Dictionary.

e undef if $Smsg does not contain a diameter: :Message Or diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Purpose: Set the value of an AVP in a Diameter message.
Prototype:

my Serr = diameter::Message::setAvpValue (Smsg, $avp name, Savp val [,
Sinstancel]) ;

If $instance has been omitted, the first instance of the AVP is set.

The return values are:

e Non-zero in case of success.

e undef if the AVP name does not exist in the AVP Dictionary.

e undef if the AVP name exists in the AVP Dictionary.

o undef if the AVP name is valid but no such AVP exists in the Diameter message.
e undef if $instance isO.

o undef if the AVP exists in the Diameter message but sinstance value is greater than the number of
AVP instances in the Diameter message.

e undef if the AVP value cannot be converted to the AVP data type specified in the AVP Dictionary.

e undef if Smsqg does not contain a diameter: :Message Or diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Purpose: Set the value of an existing AVP in a Diameter message or add that AVP at the end of the
Diameter message if the message already contains exactly $instance — 1 AVPs.
Prototype:

my Serr = diameter::Message::setAddAvpValue ($msg, $avp name, Savp val
[, Sinstancel]);

If $instance has been omitted, it defaults to 1.
The return values are:

e 1incase an AVP with the specified instance number exists and its value has been successfully set.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 76

CONFIDENTIAL — ORACLE RESTRICTED

e 2 if the Diameter messages contains exactly $instance — 1 AVPs of the specified type, in which
case the $instance’ s AVP is added to the end of the message.

e undef if the Diameter messages contains strictly less than $instance — 1 AVPs of the specified
type.

e undef if the AVP name does not exist in the AVP Dictionary.

e undef if the AVP name exists in the AVP Dictionary.

o undef if the AVP name is valid but the Diameter messages already contains $instance or more
AVPs of the specified type.

e undef if $instanceisO.
e undef if the AVP value cannot be converted to the AVP data type specified in the AVP Dictionary.

e undef if Smsg does not contain a diameter: :Message Or diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Purpose: Read the value of an AVP’s flag octet.
Prototype:

my $flags = diameter::Message::getAvpFlags (Smsg, $avp name [,
Sinstancel]) ;

The return values are:

e The value of flags octet of the $instance-th instance of the AVP (starting from 1).

e The value of the first instance of the AVP if sinstance has been omitted.

o undef if there are less instances of the AVP in the Diameter message than the $instance value.

e undef if $instance isO.

e undef if an AVP with the specified name does not exist in the Diameter message.

e undef if the AVP name is not specified in the AVP Dictionary.

e undef if Smsqg does not contain a diameter: :Message Or diameter: : GroupedAvp object or the

other parameters (if any) are undef.
Purpose: Set the value of an AVP’s flag octet.
Prototype:

my Serr = diameter::Message::setAvpFlags ($msg, $avp name, Smask [,
Sinstance]) ;

A 1 bitin $mask indicates a bit to set, while a 0 bit in $smask preserves the original bit value.
If sinstance has been omitted, the flags of the first instance of the AVP is set.

The return values are:

e Non-zero in case of success.

e undef if the AVP name does not exist in the AVP Dictionary.

e undef if the AVP name is valid but no such AVP exists in the Diameter message.

e undef if the AVP exists in the Diameter message but sinstance value is greater than the number of
AVP instances in the Diameter message.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 77

CONFIDENTIAL — ORACLE RESTRICTED

e undef if $instanceisO.

o undef if $Smsg does not contain a diameter: :Message Or diameter: : GroupedAvp 0bject or the
other parameters (if any) are undef.

Note: The V bit preserves the original value regardless the $mask value.

Purpose: Clear specific bits in an AVP’s flag.
Prototype:

my Serr = diameter::Message::clearAvpFlags (Smsg, $avp name, S$mask [,
$instance]) ;

A 1 bitin smask indicates a bit to clear, while a 0 bit in $mask preserves the original bit value.
If sinstance has been omitted, the flags first instance of the AVP is cleared.

The return values are:

e Non-zero in case of success.

e undef if the AVP name does not exist in the AVP Dictionary.

o undef if the AVP name is valid but no such AVP exists in the Diameter message.

o undef if the AVP exists in the Diameter message but sinstance value is greater than the number of
AVP instances in the Diameter message.

e undef if $instanceisO.

e undef if $Smsg does not contain a diameter: :Message Or diameter: : GroupedAvp object or the
other parameters (if any) are undef.

Note: The V bit preserves the original value regardless the $mask value.
Purpose: Delete an AVP identified by name, from a Diameter message.
Prototype:
my S$err = diameter::Message::delAvp ($msg, $avp name [, S$instance]l);
If $instance has been omitted, the first instance of the AVP is deleted.
The return values are:

e lincase AVP is deleted.
o 0if AVP does not exist in message.
e undef if the AVP name does not exist in the AVP Dictionary.

o undef if the AVP exists in the Diameter message but sinstance value is greater than the number of
AVP instances in the Diameter message.

e undef if $instanceisO.

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp 0bject or the
other parameters (if any) are undef.

Purpose: Delete all the instances of an AVP from a Diameter message.
Prototype:

my Serr = diameter::Message::delAvpAll ($msg, Savp name);

DCA Programmer’s Guide, E93198 Revision 01, September 2018 78

CONFIDENTIAL — ORACLE RESTRICTED

The return values are:

e lincase AVP is deleted.
o 0if AVP does not exist in message.
e undef if the AVP name does not exist in the AVP Dictionary.

o undef if $Smsg does not contain a diameter: :Message Or diameter: : GroupedAvp 0bject or the
other parameters (if any) are undef.

Note: The AVPs on the same nesting level are deleted, i.e., the un-grouped AVPs in a Diameter
message, if the function is called with a Diameter message parameter or the AVPs in a specific
grouped AVP that are not deeper nested in a further grouped AVP, if the function is called with a
Grouped AVP parameter.

Purpose: Return the number of instances of an AVP from a Diameter message.
Prototype:

my $cnt = diameter::Message::countAvp (Smsg, $avp_ name);
The return values are:

e 0 if the AVP does not exist in the Diameter message.

e Astrictly positive number indicating the number of occurrences of the respective AVP in the
Diameter message.

e undef if the AVP name does not exist in the AVP Dictionary.

o undef if Smsg does not contain a diameter: :Message Or diameter: : GroupedAvp 0bject or the
other parameters (if any) are undef.

Note: The AVPs on the same nesting level are counted, i.e., the un-grouped AVPs in a Diameter
message, if the function is called with a Diameter message parameter or the AVPs in a specific
grouped AVP that are not deeper nested in a further grouped AVP, if the function is called with a
Grouped AVP parameter.

Purpose: Check whether a specific AVP (instance) exists in a Diameter message.
Prototype:

my Sexists = diameter::Message::avpExists($msg, Savp name [,
Sinstance]) ;

The return values are:

o Trueif sinstance is omitted and at least one AVP with the specified name exists.
e Trueif sinstance is specified and an AVP with the specified name and instance number exists.
o False if no AVP with the specified name exists in the Diameter message.

o Falseif sinstance is specified, at least one AVP with the specified name exists, but the number of
instances of the respective AVP is strictly less than the specified $instance.

e undef if the AVP name does not exist in the AVP Dictionary.

e undef if Smsg does not contain a diameter: :Message Of diameter: : GroupedAvp 0bject or the
other parameters (if any) are undef.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 79

CONFIDENTIAL — ORACLE RESTRICTED

Note: The AVPs on the same nesting level are checked, i.e., the un-grouped AVPs in a Diameter
message, if the function is called with a Diameter message parameter or the AVPs in a specific
grouped AVP that are not deeper nested in a further grouped AVP, if the function is called with a
Grouped AVP parameter.

Purpose: Return the length of the payload of an AVP from a Diameter message.

Prototype:

my $len = diameter::Message::avpDatalength (Smsg, $avp name [,
Sinstancel]) ;

If $instance has been omitted, the length of the first instance of the AVP is returned.

The return values are:

e undef if no AVP with that name exists in the Diameter message.

e undef if $instance is specified but less than $instance AVPs exists in the Diameter message.
e Astrictly positive number or 0, indicating the length of the payload of the indicated AVP instance.
e undef if the AVP name does not exist in the AVP Dictionary.

e undef if Smsg does not contain a diameter: :Message Or diameter: : GroupedAvp object or the
other parameters (if any) are undef.

11.1.3 API to Manipulate the Diameter Grouped AVPs

All the API functions introduced in the previous section, work on grouped AVPs as well. For instance,
the value of the Subscription-1d grouped AVP may be read with:

my $gVal = diameter::Message::getAvpValue ($Smsg, “Subscription-Id”);
and the Subscription-1d grouped AVP may be added to a Diameter message with:

my Serr = diameter::Message::addAvpValue ($msg, “Subscription-Id”,
Sgval) ;

Note that in this case, $gval is an OctetString that contains both the Subscription-1d-Type and the
Subscription-l1d-Data AVPs.

This approach is particularly handy when the Subscriber-1d grouped AVP needs to be copied from one
Diameter message to another, without having to look into the individual AVPs included in it.

However, if accessing the individual AVPs included into a grouped AVP is desired, then the
getGroupedAvp and addGroupedAvp API calls provide the necessary support:

Purpose: Access a Grouped AVP in a Diameter message.

Prototype:

my S$gAvp = diameter::Message::getGroupedAvp ($msg, $avp name [,
$instance]) ;

The return values are:

e undef if the AVP name does not exist in the AVP dictionary.
e undef if AVP name exists in the AVP dictionary but it is not defined as a Grouped AVP.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 80

CONFIDENTIAL — ORACLE RESTRICTED

e undef if the AVP name is valid but the Diameter message does not contain a Grouped AVP with that

name.

e undef if the AVP name is valid but the Diameter message contains less Grouped AVPs with that
name than specified in $instance.

e Adiameter::Groupedavp Grouped AVP object that corresponds to the respective instance of the

Grouped AVP (or to the first instance if $instance is omitted).

The $gavp diameter: :Grouped AVP object can be used to manipulate the AVPs that it contains using

any of the API functions introduced so far:

Sresult = diameter::GroupedAvp::<API function> ($gAVP,
<API function params>);

where the $gavp object of type diameter: : Groupedavp replaces the $msg object of type
$diameter:Message and $result represents the return parameter of the respective API function..

Note: getGroupedavp works recursively to get a grouped AVP (snested_gAVP) contained in
another grouped AVP ($gavp):

my $nested gAvp = diameter::Message::getGroupedAvp (SgAvVp,
$avp_name) ;

where $gAvp iSa diameter: : GroupedAvp Object

Purpose: Add a Grouped AVP to the end of a Diameter message.
Prototype:
my $gAvp = diameter::Message::addGroupedAvp ($msg, $avp name) ;
where $gAvp isa diameter: : GroupedAvp Object.
The return values are:
e undef if the AVP name does not exist in the AVP dictionary.

e undef if AVP name exists in the AVP dictionary but it is not defined as a Grouped AVP.

A diameter: :GroupedAvp Grouped AVP object can be further used to manipulate the AVPs that it
contains:

my S$subscription id = diameter::Message::addGroupedAvp ($msg,
“Subscription-Id”);

diameter:GroupedAvp: :addAvpValue ($Ssubscription id, “Subscription-Id-
Type”, S$avp val);

diameter::GroupedAvp: :addAvpValue ($Ssubscription id, “Subscription-Id-
Data”, S$avp val);

Note: addGroupedaAvp works recursively to add a grouped AVP ($nested_gAVP) within another
grouped AVP ($gavp):

my S$nested gAvp = diameter::Message::addGroupedAvp (SgAVp,
$avp_ name) ;

Whae$gAvpi5adiameter::GroupedAvpomed.

DCA Programmer’s Guide, E93198 Revision 01, September 2018

81

CONFIDENTIAL — ORACLE RESTRICTED

11.2 Diameter Transaction Stateful APls

11.2.1 Internal Variables

This API is primary intended to enable a DCA App to interact with Mediation Rules through Internal
Variables. Internal Variables have been introduced by the Mediation feature and can be configured from
Main Menu: Diameter-=>Mediation—> Internal Variables. Internal Variables are persistent throughout
the lifetime of a Diameter transaction.
Purpose: Access Internal Variables.
Prototype:

my $iv_ref = new diameter::InternalVarDef (“<IV Name>");

my $internalVarMap = diameter::Param::internalVarMap (Sparam) ;

where $param is the opaque parameter passed to every event handler and <I1v_Name> is the name
assigned to the Internal Variable in Main Menu: Diameter->Mediation-> Internal Variables.

Note: The Internal Variables are configurable at the B level, therefore the <T1v_Name> must be
configured on all the sites. Otherwise, the initialization fails when invoked on those DA-MP
located in sites where <1v_Name> does not exist.

Purpose: Set and Get Internal Variables.

Prototype:
diameter::InternalVarMap::set ($internalVarMap, $iv_ref, $val);

$val = diameter::InternalVarMap::get($internalVarMap, $iv_ref);

Enables setting values to and retrieving values from an internal variable, where $iv_ref and
$internalVarMap are initialized as shown before.

11.2.2 Diameter Transaction Context Variables
The Diameter transaction context variables offer Diameter transaction persistent storage, similar to
Internal Variables. Unlike Internal Variables, Diameter transaction context variables are not configurable
via the GUI (which provides for a much simpler API) and cannot be shared with other features.
Purpose: Store Diameter transaction context variables
Prototype:

$err = dca::transctx::store(“<var id>", S$var)
The function returns undef if $var iS undef or any error occurs (e.g., $var is a Perl hash or array that
cannot be successfully encoded into JSON or DSR cannot allocate more memory space for the Diameter
context variable) and 1 if the operation is successful.
Purpose: Retrieve Diameter transaction context variables
Prototype:

$var = dca::transctx::fetch(“<var id>");

undef IS returned in case of failure (e.g., <var id> is not found because no variable with that name has
been previously stored).

DCA Programmer’s Guide, E93198 Revision 01, September 2018 82

CONFIDENTIAL — ORACLE RESTRICTED

11.3 Read DCA App Configuration Data

This API enables a DCA App to access its configuration data, which was specified and provisioned as
described in Sections 3.3.3 and 3.3.4.

When the Perl script is generated, the DCA App configuration data is converted into a Perl variable. The
Perl variable name is $dca: : appConfig and is a hash (one key for each table) of arrays (one index for
each record) of hashes (one key for each field in the table).

Read-only access on the DCA App configuration data is enforced using the Const::Fast CPAN module
and applies to the data included in the $dca: : appConfig definition (which is automatically generated
from the DCA App configuration data).

Note that there are semantical differences from one Const::Fast version to another, which affect the way
sdca: :appConfig can be subsequently manipulated in the Perl script with regard to adding new records
to 3dca: :appConfig Or accessing records that are not defined in $dca: :appConfig.

For instance, in version 0.006, which is the one currently used, an attempt to read or assign a value to an
inexistent table (outermost hash key) ¢dca: :appConfig results in a runtime error.

On the other hand, assigning values to inexistent indexes (table records) and/or inexistent fields
(innermost hash key) succeeds and can be subsequently successful read, while reading from inexistent
indexes and/or inexistent fields return undef. These indexes and fields are not written back to the DCA
App configuration data.
Purpose: Read the DCA App configuration data.
Prototype:
$dca::appConfig{“<config table name>"} [<row index>]{“<field name>"}
for non-“single row” configuration tables.
$dca::appConfig{“<config table name>"}{“<field name>"}
for “single row” configuration tables.

Example: Assuming a DCA App defines a configuration table called "MyTable” with two fields
“FieldA” and “FieldB” and provisions a few rows, it is possible to retrieve the NOAM and
SOAM provisioned data from the DCA app in the following way:

for $i (0 .. S$#dca::appConfig{“MyTable”}) {
dca::application::logInfo(Sdca::appConfig{“MyTable”}[$i]{“Fieldl”});
dca::application::logInfo ($dca::appConfig{“MyTable”} [$i]{“Field2”});
}

11.4 Routing API

The routing API enables a DCA App to perform some basic routing functions.

The dca::action::forward(), dca::action: :answer ($ans) and dca: :action: :drop () API
functions terminate the execution of the event handler. This means that the statements that follow them in
the Perl code are not executed. This also has a side effect on the U-SBR queries initiated before invoking
anyOfdca::action::forward(),dca::action::answer($ans)anddca::action::drop()
because, as mentioned in Section 6.3.6.2, the U-SBR queries are actually sent after the execution of the

DCA Programmer’s Guide, E93198 Revision 01, September 2018 83

CONFIDENTIAL — ORACLE RESTRICTED

event handler completes: the side effect is the U-SBR queries are also not executed (i.e., sent to the
U-SBR).

Besides dca::action::forward(),dca::action: :answer (Sans) and dca: :action: :drop(),
an event handler’s execution flow also terminates (as any other Perl subroutine) when a return
statement is encountered or when the enclosing curly bracket is reached. In this case, the implicit routing
decision that the DCA framework takes depends on the Perl subroutine return value:

e If the return value is greater or equal to 0, then the Diameter message is forwarded.
o If the return value is negative, then the runtime error behavior (Section 3.3.1) is executed.

Purpose: Complete the processing and drop the message.
Prototype:
dca::action::drop();

Note: Invoking dca::action::drop () causes the event handler to immediately terminate execution.

Purpose: Build a Diameter Answer.
Prototype:

$ans = new dca::application::answer (<error code>, <error text>,
<vendor_id>);

The function returns unde £ in case of failure or a diameter: :Message Object.

When receiving a Diameter request or answer this API function enables a DCA App to construct a
Diameter answer and either return it to the originator of the corresponding Diameter request or,
respectively, substitute the original Diameter answer message.

The EDL API (see Section 11.1) may be used to further process the $ans Diameter answer (e.g., add
more AVPs).
Purpose: Send a Diameter Answer Created by the DCA App.
Prototype:
dca::action::answer ($ans) ;
Note: Invoking dca::action::answer ($Sans) causes the event handler to immediately terminate
execution.
Purpose: Complete the processing and pass the message.
Prototype:
dca::action::forward();
Enables a DCA App to pass a Diameter message to the Diameter Routing Layer for routing.

Note: Invoking dca::action::forward () causes the event handler to immediately terminate
execution.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 84

CONFIDENTIAL — ORACLE RESTRICTED

Purpose: Specify an ART based on which a Diameter request is routed.
Prototype:
$Serr = dca::route::setART (KART table name>);
The function returns unde £ if the name of the ART does not exist (failure) or 1 if success.

Before invoking dca: :action::forward () ona Diameter request, this routing API function enables a
DCA App to specify which ART to be used for routing the respective Diameter request.

Note: The ART is configurable at the B level; therefore, the <ART table name> must be configured
on all the sites. Otherwise, the API function fails when invoked on those DA-MP located in sites
where <ART table name> does not exist.

Purpose: Specify a PRT based on which a Diameter request is routed.

Prototype:

$err = dca::route::setPRT(<PRT_table_name>);

The function returns unde £ if the name of the PRT does not exist (failure) or 1 if success.

Before invoking dca: :action::forward () on a Diameter request, this routing API function enables a
DCA App to specify which PRT to be used for routing the respective Diameter request.

Note: The PRT is configurable at the B level, therefore the <PRT table name> must be configured on
all the sites. Otherwise, the API function fails when invoked on those DA-MP located in sites
where <PRT table name> d0es not exist.

11.5 Debugging API

The Debugging API allows tracking the execution of the event handlers by supporting the equivalent of
printf, log, echo, etc., functions in other programming/scripting languages.

The messages are logged in the dsr.DCA trace file (use tr.tail dsr.DCA). The following masks may be
applied using the tr.set command to filter the ERROR, INFO, and WARNING error messages:
0x00000001 (error), 0x00000002 (info) and respectively 0x00000004 (warning).

All the traces generated by a DCA app using the API calls is prefixed with the DCA application name (to
allow for further filtering, e.g., using the grep utility).

The log[Info|Warn|Error] API functions also generate an IDIH trace (see Section 11.8).
Note, however, that in a production network DSR logs only the vital traces are therefore the main
debugging tool for DCA Apps in production networks is the IDIH feature.

Purpose: Retrieve the application name.

Prototype:

Sappname = dca::application::getAppName () ;

DCA Programmer’s Guide, E93198 Revision 01, September 2018 85

CONFIDENTIAL — ORACLE RESTRICTED

Purpose: Retrieve the version name

Prototype:

Svername = dca::application::getVersionName () ;

Note: Besides debugging, another possible use case for reading the version name is including it in the
DCA app state stored on the U-SBR. This supports backward compatibility in case the DCA app
frequently changes the format of the DCA app across DCA app versions.

Purpose: Retrieve the current state.

Prototype:

Sverstate = dca::application::getState();

Note: The states returned can be either Trial or Production, since these are the only states when the
DCA App is executed.

Purpose: Generate a trace containing user-defined messages and having a severity of INFO.

Prototype:
dca::application::logInfo (<message>);

The user-defined messages is logged into dsr.DCA (tr.tail dsr.DCA).

Purpose: Generate a trace containing user-defined messages and having a severity of WARNING.
Prototype:

dca::application::logWarn (<message>) ;

Purpose: Generate a trace containing user-defined messages and having a severity of ERROR
Prototype:

dca::application::logErr (<message>) ;

11.6 Custom MEAL API

Once the Custom MEAL objects are differentiated from the Main Menu: DCA Framework-><DCA
App Name>->Custom MEALSs screen (see Section 9.2.2), they can be initialized and used from DCA
Apps.

11.6.1 Counter Template API

Purpose: A DCA App is able to bind to a Scalar Counter Custom MEAL by referring to it by the Custom
MEAL configured name.

Prototype:
my $all Cnt = new dca::meal::counter (“MyCnt”);

where “MyCnt” is the name specified when differentiating a Custom MEAL template of type Counter
and measurement type Scalar.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Scalar Counter.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 86

CONFIDENTIAL — ORACLE RESTRICTED

In case of failure, undef is returned.
Possible failure cases are:

e No Custom MEAL with the specified name is currently defined.

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

e A Custom MEAL with that name exists, but it is not a Scalar Counter.

Note: As a matter of best practice, the initialization of the Custom MEAL objects is performed in the
main body of the Perl script, which is executed once right after a successful compilation (rather
than in an event handler):

Die “Custom MEAL differentiation failure”
unless $obj = new dca::meal::<TemplateType> (“MyCustomMeal") ;

This ensures a compilation error is triggered if the binding process has failed, for instance because there is
a name mismatch between the Perl script and the differentiation GUI screen. Using an undefined $ob3
later in the event handlers triggers run-time errors.
Purpose: A DCA App is able to peg a Scalar Counter Custom MEAL.
Prototype:

Serr = $all Cnt->peg();
where $a11 cnt isa valid Scalar Counter Custom MEAL object.
The API call returns 1 if success and undef if the operation on the underlying Comcol object has failed.
Purpose: A DCA App is able to bind to an Arrayed Counter Custom MEAL by referring to it by the
Custom MEAL configured name.
Prototype:

my $per Cnt = new dca::meal::arrayedCounter (“MyArrayedCnt") ;

where “MyArrayedCnt” is the name specified when differentiating a Custom MEAL template of type
Counter and measurement type Arrayed.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Arrayed Counter.

In case of failure, undef is returned.
Possible failure cases are:

e No Custom MEAL with the specified name is currently defined.

o A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

e A Custom MEAL with that name exists, but it is not an Arrayed Counter.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 87

CONFIDENTIAL — ORACLE RESTRICTED

Purpose: A DCA App is able to peg a specific index of an Arrayed Counter Custom MEAL.
Prototype:
$err = Sper Cnt->peg($index);

where $per Cnt is a valid Arrayed Counter Custom MEAL object and $index is the index to be
pegged.

The API call returns 1 if success and undef if the either operation on the underlying Comcol object has
failed or the index value is negative.

11.6.2 Rate Template

Purpose: A DCA App is able to bind to a Scalar Rate Custom MEAL by referring to it by the Custom
MEAL configured name.

Prototype:
my $all_Rate = new dca::meal::rate(“MyRate");

where “MyRate” is the name specified when differentiating a Custom MEAL template of type Rate and
measurement type Scalar.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Scalar Rate.

In case of failure, undef is returned.
Possible failure cases are:

e No Custom MEAL with the specified name is currently defined.

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

e A Custom MEAL with that name exists, but it is not a Scalar Rate.

Purpose: A DCA App is able to peg a Scalar Rate Custom MEAL.
Prototype:

Serr = $all Rate->peg();
where $all Rate isa valid Scalar Rate Custom MEAL object.

The API call returns 1 if success and undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA App is able to read the current value of a Scalar Rate Custom MEAL.
Prototype:

$val = $all Rate->readRate();
where $all Rate is a valid Scalar Rate Custom MEAL object.

The API call returns an integer representing the current value in case of success and undef if the
operation on the underlying Comcol object has failed.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 88

CONFIDENTIAL — ORACLE RESTRICTED

Purpose: A DCA App is able to read the average value of a Scalar Rate Custom MEAL.
Prototype:
$val = $all Rate->readAvgRate();
where $all Rate isa valid Scalar Rate Custom MEAL object.
The API call returns an integer representing the average value in case of success and undef if the
operation on the underlying Comcol object has failed.
Purpose: A DCA App is able to determine the current severity of the alarm associated to an Scalar Rate
template.
Prototype:
$err = $all Rate->getSeverity();
where $all Rate is a valid Scalar Rate Custom MEAL object.
The API call returns:

dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Cleared

undef if the operation on the underlying Comcol object has failed.
Note: The severity values are defined as:

use constant {

Cleared => 0,
Info => 1,
Minor = 2,
Major => 3,
Critical =>4

~

}i
which enables comparing them. For instance:
if ($Sall Rate->getSeverity() >= dca::meal::Major)
is true if the severity is Major or Critical and is false if the severity if Minor. This also applies to
Basic as well as arrayed templates.
Purpose: A DCA App is able to bind to an Arrayed Rate Custom MEAL by referring to it by the Custom
MEAL configured name.
Prototype:
my S$per Rate = new dca::meal::arrayedRate (“MyArrayedRate");

where “MyArrayedRate” is the name specified when differentiating a Custom MEAL template of type
Rate and measurement type Arrayed.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Arrayed Rate.

In case of failure, undef is returned.

Possible failure cases are:

DCA Programmer’s Guide, E93198 Revision 01, September 2018 89

CONFIDENTIAL — ORACLE RESTRICTED

¢ No Custom MEAL with the specified name is currently defined.

o A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

e A Custom MEAL with that name exists, but it is not an Arrayed Rate.

Purpose: A DCA App is able to peg a specific index of an Arrayed Rate Custom MEAL.
Prototype:

$err = $per Rate->peg($index);
where $per Rate is a valid Arrayed Rate Custom MEAL object and $index is the index to be pegged.
The API call returns 1 if success and undef if either the operation on the underlying Comcol object has
failed or the index value is negative.
Purpose: A DCA App is able to read the current value of a specific index of an Arrayed Rate Custom
MEAL.
Prototype:

$val = $per Rate->readRate ($index) ;

where $per Rate is a valid Arrayed Rate Custom MEAL object and $index is the index the current
value of which is read.

The API call returns an integer representing the current value of the specified index in case of success and
undef if either the operation on the underlying Comcol object has failed or the index value is negative.
Purpose: A DCA App is able to read the average value of a specific index of an Arrayed Rate Custom
MEAL.
Prototype:

$val = Sper Rate->readAvgRate (Sindex);

where $per Rate is a valid Arrayed Rate Custom MEAL object and $index is the index the average
value of which is pegged.

The API call returns an integer representing the average value of the specified index in case of success
and undef if either the operation on the underlying Comcol object has failed or the index value is
negative.

Purpose: A DCA App is able to determine the current severity of the alarm associated to an Arrayed
Rate template:
Prototype:

Serr = Sper Rate->getSeverity(Sindex);

where $per Rate is a valid Arrayed Rate Custom MEAL object and $index identifies the particular
index the alarm status of which is read.

The API call returns:

dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Cleared

undef if either the operation on the underlying Comcol object has failed or the index value is negative.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 90

CONFIDENTIAL — ORACLE RESTRICTED

11.6.3 Basic Template

Purpose: A DCA App is able to bind to a Scalar Basic Custom MEAL by referring to it by the Custom
MEAL configured name.

Prototype:
my $all Size = new dca::meal::basic(“MyBasic");

where “MyBasic” is the name specified when differentiating a Custom MEAL template of type Basic
and measurement type Scalar.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Scalar Basic template.

In case of failure, undef is returned.
Possible failure cases are:

e No Custom MEAL with the specified name is currently defined.

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

e A Custom MEAL with that name exists, but it is not a Scalar Basic.

Purpose: A DCA App is able to set the value of a Scalar Basic Custom MEAL.
Prototype:
Serr = $all Size->setValue ($value);

where $all Size isavalid Scalar Basic Custom MEAL object and $value is the value the Scalar Basic
Custom MEAL is set to.

The API call returns 1 if success and undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA App is able to increment the value of a Scalar Basic Custom MEAL.
Prototype:
$err = $all Size->increment (Scount);

where $all Size isa valid Scalar Basic Custom MEAL object and scount is the value the Scalar Basic
Custom MEAL is incremented with.

The API call returns 1 if success and undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA App is able to decrement the value of a Scalar Basic Custom MEAL.
Prototype:
$err = $all Size->decrement ($count);

where $all Size isa valid Scalar Basic Custom MEAL object and scount is the value the Scalar Basic
Custom MEAL is decremented with.

The API call returns 1 if success and unde £ if the operation on the underlying Comcol object has failed.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 91

CONFIDENTIAL — ORACLE RESTRICTED

Purpose: A DCA App is able to read the current value of a Scalar Basic Custom MEAL.
Prototype:

$val = $all Size->getValue();
where $all Size isa valid Scalar Basic Custom MEAL object.
The API call returns an integer representing the current value in case of success and undef if the
operation on the underlying Comcol object has failed.
Purpose: A DCA App is able to read the average value of a Scalar Basic Custom MEAL.
Prototype:

$val = $all Size->getAvgValue();
where $all Size isa valid Scalar Basic Custom MEAL object.
The API call returns an integer representing the average value in case of success and undef if the
operation on the underlying Comcol object has failed.
Purpose: A DCA App is able to determine the current severity of the alarm associated to an Scalar Basic
template.
Prototype:

Serr = $all Size->getSeverity();
where $al1l Size is a valid Scalar Basic Custom MEAL object.
The API call returns:

dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Cleared

undef if the operation on the underlying Comcol object has failed.
Purpose: A DCA App is able to bind to an Arrayed Basic Custom MEAL by referring to it by the
Custom MEAL configured name.
Prototype:
my $per Size = new dca::meal::arrayedBasic (“MyArrayedBasic");

where “MyArrayedBasic” is the name specified when differentiating a Custom MEAL template of type
Basic and measurement type Arrayed.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Arrayed Basic template.

In case of failure, unde £ is returned.
Possible failure cases are:

e No Custom MEAL with the specified name is currently defined.

o A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

o A Custom MEAL with that name exists, but it is not an Arrayed Basic.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 92

CONFIDENTIAL — ORACLE RESTRICTED

Purpose: A DCA App is able to set the value of an Arrayed Basic Custom MEAL.
Prototype:
$err = Sper Size->setValue(Svalue, S$index);

where $per Size isa valid Arrayed Basic Custom MEAL object, $index is the index the value of
which is set and svalue is the value it is set to.

The API call returns 1 if success and undef if either the operation on the underlying Comcol object has
failed or the index value is negative.
Purpose: A DCA App is able to increment the value of an Arrayed Basic Custom MEAL.
Prototype:
$err = Sper Size->increment ($count, $index);

where $per Size is a valid Arrayed Basic Custom MEAL object, $index is the index the value of
which is incremented and $count is the value it is incremented with.

The API call returns 1 if success and undef if either the operation on the underlying Comcol object has
failed or the index value is negative.
Purpose: A DCA App is able to decrement the value of an Arrayed Basic Custom MEAL.
Prototype:
$err = S$per Size->decrement (Scount, $index);

where $per Size isa valid Arrayed Basic Custom MEAL object, $index is the index the value of
which is decremented and $count is the value it is decremented with.

The API call returns 1 if success and undef if either the operation on the underlying Comcol object has
failed or the index value is negative.
Purpose: A DCA App is able to read the current value of an Arrayed Basic Custom MEAL.
Prototype:

$val = S$per Size->getValue($index);

where $per Size is a valid Arrayed Basic Custom MEAL object and $index is the index the value of
which is read.

The API call returns an integer representing the current value of the specified index in case of success and
undef if either the operation on the underlying Comcol object has failed or the index value is negative.
Purpose: A DCA App is able to read the average value of an Arrayed Basic Custom MEAL.
Prototype:

$val = Sper Size->getAvgValue (Sindex);

where $per Size is avalid Arrayed Basic Custom MEAL object and $index is the index the average
value of which is read.

The API call returns an integer representing the average value of the specified index in case of success
and undef if either the operation on the underlying Comcol object has failed or the index value is
negative.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 93

CONFIDENTIAL — ORACLE RESTRICTED

Purpose: A DCA App is able to determine the current severity of the alarm associated to an Arrayed
Basic template.

Prototype:
$err = Sper Size->getSeverity(Sindex);

where $per Size is a valid Arrayed Basic Custom MEAL object and $index identifies the particular
index the alarm status of which is read.

The API call returns:

dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Cleared

undef if either the operation on the underlying Comcol object has failed or the index value is negative.

11.6.4 Event Template

Purpose: DCA App is able to bind to an Event Custom MEAL by referring to it by the Custom MEAL
configured name.

Prototype:
my SerrorEvent = new dca::meal::event (“MyEvent");
where “MyEvent” is the name specified when differentiating a Custom MEAL template of type Event.

The API call returns a valid Custom MEAL object in case of success. The Custom MEAL object may be
used in subsequent API calls to perform specific operations on the Event.

In case of failure, undef is returned.
Possible failure cases are:

e No Custom MEAL with the specified name is currently defined.

e A Custom MEAL with that name exists, but either the differentiation process is not yet completed, or
the un-differentiation process was initiated.

e A Custom MEAL with that name exists, but it is not a Event.
Purpose: A DCA App is able to generate an event (Info severity), raise an alarm (Minor, Major, Critical
severity) and clear an alarm (Clear severity).
Prototype:
Serr = SerrorEvent->log($severity, SaddInfoText);

where $errorEvent is a valid Event Custom MEAL object, $severity is one of the possible values
(dca::meal::Critical,dca::meal::Major,dca::meal::Minor,dca::meal::Cleared)and
$SaddInfoText is the text that should be included in the alarm’s additional information field.

The API call returns 1 if success and undef if the operation on the underlying Comcol object has failed.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 94

CONFIDENTIAL — ORACLE RESTRICTED

Purpose: A DCA App is able to determine whether an event or alarm is throttled before trying to raise it
(again).
Prototype:

Serr = SerrorEvent->isThrottled($severity);

where $errorEvent is a valid Event Custom MEAL object, $severity is one of the possible values
(dca::meal::Critical,dca::meal::Major,dca::meal::Minor,dca::meal::lnfo)

The API call returns:

o 1 if the event/alarm is throttled.
e 0 if the event/alarm is not throttled.
e undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA App is able to determine the current severity of an event or alarm:
Prototype:
Serr = S$errorEvent->getSeverity();
where $errorEvent is a valid Event Custom MEAL object.
The API call returns:

dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Info, dca::meal::Cleared

undef if the operation on the underlying Comcol object has failed.

11.7 U-SBR API

The U-SBR API enables a DCA App to create, read, update, and delete data in a U-SBR DB. As
described in Section 6.3.6.2 the U-SBR API calls work asynchronously and a callback subroutine is
necessary to fetch the result of the query.

11.7.1 The Prototype of Queries and Query Results

This section describes the common structure of the U-SBR API functions and how the results of a U-SBR
guery can be retrieved in the Perl script.

Section 11.7.2 further describes the particularities of each individual U-SBR API function.

11.7.1.1 Specifying the Query
All the U-SBR API functions share a common prototype:

Serr = dca::sbr::sbrinstance (<usbr logical name>)-><API function>(
<key type>, <key data type>, Skey,
<value data type>, $value,
<callback subroutine>,

[<flags>]);

where:

e <usbr logical name> iSastring (a constant value or a scalar variable) containing the logical
name of the U-SBR DB the query is sent to. The logical names for the physical U-SBR DBs are

DCA Programmer’s Guide, E93198 Revision 01, September 2018 95

CONFIDENTIAL — ORACLE RESTRICTED

configured from Main Menu: DCA Framework-><DCA App Name>->Application Control, by
selecting the DCA App version and clicking on SBR DB Name Mapping.

<API function> isone of: create, createOrRead, read, update, concurrentUpdate, and delete,
respectively.

<key_type> is typically a constant value defined by the DCA App. It distinguishes between
different key types that a DCA App may use (e.g., IMSI, NAI, IP, IP_SRC, etc.). For example, the
key value "fred" of type NAI is a different key from 66.72.65.64 of type IP, even though they have
the same binary representation.

<key data_ type> is pre-defined constant that describes the data type of the key and must be one
of:

e dca::sbr::KeyDataType::BCD — the key is a scalar.

o dca::sbr::KeyDataType::UINT32 — the key is a scalar.

e dca::sbr::KeyDataType::INT64 — the key is a scalar.

e dca::sbr::KeyDataType::STRING — the key is a scalar.

e dca::sbr::KeyDataType::IPv4 — the key is a NetAddr::IP object.

o dca::sbr::KeyDataType::IPv6 — the key is a NetAddr::IP object.

Note: There is no explicit data type for float numbers; float numbers are converted to strings.
$key is a Perl variable that holds the key part of the key-value pair to be created, read, updated or
deleted.

<value data type> is pre-defined constant that describes the data type of the key and must be one
of:

e (dca::sbr::StateDataType::BCD — the key is a scalar.

e dca::sbr::StateDataType::UINT32 — the key is a scalar.

e (dca::sbr::StateDataType::STRING — the key is a scalar, an array reference or a hash reference.
Note: Arrays and hashes are encoded into JSON and stored in the U-SBR DB in string format.

e dca::sbr::StateDataType::IPv4 —the key is a NetAddr::IP object.

e dca::sbr::StateDataType::IPv6 —the key is a NetAddr::IP object.

Note: There is no explicit data type for float numbers; float numbers are converted to strings.
$value is a Perl variable that holds the value part of the key-value pair to be written into the U-SBR

(via create or update operations). Note, therefore, that read and delete do not specify a svalue
parameter and as a result no <value data type> parameter.

<callback subroutine> is a string representing the name of the Perl subroutine that are invoked
by the DCA framework to deliver the query result,

<flags> is an optional OR-mask of predefined flags that may apply to certain API functions.

The API call returns:

1 if the parameters are successfully parsed and encoding into a Stack Event.

Note that, because the API call works asynchronously, at this stage the query has not been sent yet, its
outcome cannot be known, $err merely tells whether a query could be successfully built.

undef if parsing or encoding the parameters fails.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 96

CONFIDENTIAL — ORACLE RESTRICTED

11.7.1.2 Retrieving the Query Result

The result of a U-SBR query can be retrieved in the callback function by using the
dca::sbr::result () class. An error code is always returned and some queries also return data
(consisting of the data type along with the data itself):

e Serr_code = dca::sbr::result()->code();

Retrieves the error code. If the error codes indicates success (dca: :sbr: :ResultCode: : 0k) then some
API functions also return data, which can be retrieved using the dataType () and data () methods
described below.

A number of error codes are common to all U-SBR API functions:

e dca::sbr::ResultCode: :0k — indicates the query has successfully executed the intended
operation;

e dca::sbr::ResultCode: :DBError —an error occurred on the SBR side that prevented the query
to be executed;

e dca::sbr::ResultCode::SendError — an error occurred when attempting to send the query,
typically because of ComAgent overload (ComAgent related alarms are raised in this case);

e dca::sbr::ResultCode: :LogicalNameMismatch — indicates that no mappings to physical U-
SBR DBs have been configured for the logical name used in the <usbr logical name> parameter.
Alarm 33313 are raised;

e dca::sbr::ResultCode: :AccessError —occurs when (i) the physical U-SBR DBs, to which
the <usbr logical name> parameter is mapped to, are owned by another DCA App (see Main
Menu: SBR->Configuration>SBR Databases, Owner Application column) and (ii) the current
DCA App is configured to access the physical U-SBR DBs owned by other DCA Apps only in read-
only mode (see Main Menu: DCA Framework-><DCA App Name>->General Options, Read-
Only U-SBR Access as Guest option);

e dca::sbr::ResultCode::MaxStateSize —the size of either the key or the data, the DCA App
attempts to look up or respectively store in the U-SBR DB, exceeds the configured maximum sizes
(Main Menu: DCA Framework->Configuration, Maximum Size of Application State and
respectively Maximum Size of the Key options)

® dca::sbr::ResultCode: :MaxEventReached — the maximum number of U-SBR queries that a
Diameter message event handler is allowed to send has been exceeded (see Main Menu: DCA
Framework-=><DCA App Name>->General Options, Max. U-SBE Queries per Message option).

A few error codes (dca::sbr::ResultCode::GenericErrRecExists,
dca::sbr::ResultCode::GenericErrRecNotFound and dca::sbr::ResultCode::GenericErrRecObsoleted) are
specific to certain U-SBR API functions.

e 3data_type = dca::sbr::result()->dataType();

If the result contains data, then datatype() returns the data type of the stored data, i.e., one of:
dca::sbr::StateDataType::BCD, dca::sbr::StateDataType::UINT32, dca::sbr::StateDataType::INT64,
dca::sbr::StateDataType::STRING, dca::sbr::StateDataType::IPv4, dca::sbr::StateDataType::IPVv6;

If the result contains no data, then datatype () returns undeft.

e $data = dca::sbr::result()->data();
If the result contains data, then data () returns the stored data.

If the result contains no data, then data () returns undef.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 97

CONFIDENTIAL — ORACLE RESTRICTED

11.7.2 The U-SBR API Functions

Purpose: Attempts to create a key-value record in a U-SBR DB or fails if a record with the same key
already exists.

Prototype: (see also Section 11.7.1.1)

$err = dca::sbr::sbrInstance (<usbr logical name>)->create (
<key type>, <key data type>, Skey,
<value data type>, S$value,
<callback subroutine>);

Query Results: The possible result of the create API function are described in the table below (see also
Section 11.7.1.2):

dca::sbr::result()

dca::sbr::result()

dca::sbr::result()->code() ->dataType() ->data()
dca::sbr::ResultCode::Ok N/A N/A
(The record does not exist and was created)

dca::sbr::ResultCode::DBError, N/A N/A

dca::sbr::ResultCode::SendError
dca::sbr::ResultCode::LogicalNameMismatch
dca::sbr::ResultCode:: AccessError
dca::sbr::ResultCode::MaxStateSize
dca::sbr::ResultCode::MaxEventReached

dca::sbr::ResultCode::ErrRecExists N/A N/A

Purpose: Creates a key-value record in a U-SBR DB or returns the record, if a record with the same key
already exists.

Prototype: (see also Section 11.7.1.1)

Serr = dca::sbr::sbrinstance (<usbr logical name>)->createOrRead (
<key type>, <key data type>, Skey,
<value data type>, $value,
<callback subroutine>);

Query Results: The possible result of the create API function are described in the table below (see also
Section 11.7.1.2):

dca::sbr::result()->code()

dca::sbr::result()
->dataType()

dca::sbr::result()
->data()

dca::sbr::ResultCode::Ok

(The record does not exist and was created)

N/A

N/A

dca::
dca::
dca:
dca::
dca::
dca:

sbr::
sbr::
shr::
sbr::
sbr::
shr::

ResultCode
ResultCode
ResultCode
ResultCode
ResultCode
ResultCode

::DBError,

::SendError
::LogicalNameMismatch
::AccessError
::MaxStateSize
::MaxEventReached

N/A

N/A

! The programmer does not rely on the returned variable being defined, undefined, or having any particular value.

DCA Programmer’s Guide, E93198 Revision 01, September 2018

98

CONFIDENTIAL — ORACLE RESTRICTED

dca::sbr::result() dca::sbr::result()
dca::sbr::result()->code() ->dataType() ->data()
dca::sbr::ResultCode::ErrRecExists The data type of the existing The existing record
record

Purpose: Reads the value associated to a key from the U-SBR DB, or fails if the key is not found.
Prototype: (see also Section 11.7.1.1)

$err = dca::sbr::sbrInstance(<usbr logical name>)->read(
<key type>, <key data type>, S$key,
<callback subroutine>);

Note that no $value parameter is present since no value is supposed to be written into the U-SBR DB.

Query Results: The possible result of the create API function are described in the table below (see also
Section 11.7.1.2):

dca::sbr::result() dca::sbr::result()
dca::sbr::result()->code() ->dataType() ->data()
dca::sbr::ResultCode::Ok The data type of the existing The existing record
(The record exists and was read) record
dca::sbr::ResultCode::DBError, N/A N/A
dca::sbr::ResultCode::SendError
dca::sbr::ResultCode::LogicalNameMismatch
dca::sbr::ResultCode:: AccessError
dca::sbr::ResultCode::MaxStateSize
dca::sbr::ResultCode::MaxEventReached
dca::sbr::ResultCode::ErrRecNotFound N/A N/A

Purpose: Attempts to update the value associated with a key in the U-SBR DB or fails if a record with
the key could not be found.

Prototype: (see also Section 11.7.1.1)

Serr = dca::sbr::sbrInstance (<usbr logical name>)->update (
<key type>, <key data type>, Skey,
<value data type>, $value,
<callback subroutine>);

Query Results: The possible result of the create API function are described in the table below (see also
Section 11.7.1.2):

dca::sbr::result() dca::sbr::result()
dca::sbr::result()->code() ->dataType() ->data()
dca::sbr::ResultCode::Ok N/A N/A
(The record exists and was updated)

DCA Programmer’s Guide, E93198 Revision 01, September 2018 99

CONFIDENTIAL — ORACLE RESTRICTED

dca::sbr::result() dca::sbr::result()
dca::sbr::result()->code() ->dataType() ->data()

dca::sbr::ResultCode::DBError, N/A N/A
dca::sbr::ResultCode::SendError
dca::sbr::ResultCode::LogicalNameMismatch
dca::sbr::ResultCode:: AccessError
dca::sbr::ResultCode::MaxStateSize
dca::sbr::ResultCode::MaxEventReached

dca::sbr::ResultCode::ErrRecNotFound N/A N/A

Purpose: Attempts to update the value associated with a key that was previously retrieved (typically
using a read or a createOrRead operation) from the U-SBR DB. It fails if the key-value record has been
updated in the meantime by a concurrent update query.

Prototype: (see also Section 11.7.1.1)

Serr = dca::sbr::sbrinstance (<usbr logical name>)->concurrentUpdate (
<key type>, <key data type>, Skey,
<value data type>, $value,
<callback subroutine>);

Query Results: The possible result of the create API function are described in the table below (see also
Section 11.7.1.2):

dca::sbr::result() dca::sbr::result()
dca::sbr::result()->code() ->dataType() ->data()
dca::sbr::ResultCode::Ok N/A N/A
(The record exists and was successfully updated)
dca::sbr::ResultCode::DBError, N/A N/A
dca::sbr::ResultCode::SendError
dca::sbr::ResultCode::LogicalNameMismatch
dca::sbr::ResultCode::AccessError
dca::sbr::ResultCode::MaxStateSize
dca::sbr::ResultCode::MaxEventReached
dca::sbr::ResultCode::ErrRecNotFound N/A N/A
dca::sbr::ResultCode::ErrRecObsoleted The data type of the updated The updated record
(The record exists but was updated by a concurrent record
update query. The DCA App re-processes the returned
value and retries the operation)

Purpose: Deletes a key-value record from the U-SBR DB, or fails if the key is not found.
Prototype: (see also Section 11.7.1.1)

Serr = dca::sbr::sbrInstance(<usbr logical name>)->delete (
<key type>, <key data type>, Skey,

<callback subroutine>);

Note that no $value parameter is present since no value is supposed to be written into the U-SBR DB.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 100

CONFIDENTIAL — ORACLE RESTRICTED

Query Results: The possible result of the create API function are described in the table below (see also
Section 11.7.1.2):

dca::sbr::result() dca::sbr::result()
dca::sbr::result()->code() ->dataType() ->data()
dca::sbr::ResultCode::Ok N/A N/A
(The record exists and was deleted)
dca::sbr::ResultCode::DBError, N/A N/A
dca::sbr::ResultCode::SendError
dca::sbr::ResultCode::LogicalNameMismatch
dca::sbr::ResultCode::AccessError
dca::sbr::ResultCode::MaxStateSize
dca::sbr::ResultCode::MaxEventReached
dca::sbr::ResultCode::ErrRecNotFound N/A N/A

11.8 Peer Information
This section describes the APls to fetch the Peer Information.

11.8.1 Check for Configured Peer.

A DCA app shall be able to check if a given Peer Name is configured in the system [SO] or not.
Prototype:

$status = dca::peerinfo::isPeerExists(<Peer name>);

Where <Peer Name> is the name of configured Peer in the system [SO] and $status is 1 if given <Peer
Name> is configured in the SO GUI or 0 otherwise.

11.8.2 Fetch the Originator Peer.

When receiving a Diameter Message, a DCA app shall be able to fetch the Originator of the Diameter
Message.

Prototype:
$peerName = dca::peerInfo::getOriginPeerName();

Where $peerName is the Peer Node name as configured in the SO GUI or undef in case of failure while
fetching the Peer Node detail.

12. Interaction with IDIH

Table 4 illustrates the IDIH events generated by a DCA App.
Table 4: IDIH Events

Event
ID Event Type Scope | Instance Data When Recorded
2300 | Diameter Request | Routine App e DCA application The Diameter Request
processing Invocation Data short name processing routine of a DCA
routine invoked e Subroutine name application is invoked by the
DCA framework.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 101

CONFIDENTIAL — ORACLE RESTRICTED

Event
1D Event Type Scope | Instance Data When Recorded
2301 | Diameter Answer | Routine App e DCA application The Diameter Answer
processing Invocation Data short name processing routine of a DCA
routine invoked e Subroutine name application is invoked by the
DCA framework.
2302 | U-SBR Query U-SBR Query | App e DCA application An U-SBR query is prepared
send Data short name by a DCA application.
e Stack Event ID
(create, read, update,
o)
e DAL ID of the
application owning
the U-SBR DB
o Keyvalue
o Key type
2303 | Callback invoked | Routine App o DCA application An U-SBR query returns a
Invocation Data short name result and a callback
e Callback name subroutine is invoked.
2304 | Subroutine name | Execution App e DCA application The scripting language
not found Exception Data short name interpreter returns an error
e Subroutine name indicating the subroutine
doesn’t exist.
2305 | Runtime error Execution App e DCA application The scripting language
Exception Data short name interpreter returns an error
e Subroutine name indicating the a runtime error
e Error message occurred.
returned by the
interpreter
2306 | Debug message Debug App e A debug message A module included by default
Data by the DCA framework
enables DCA Apps to generate
debug messages
2307 | U-SBR Query U-SBR Query | App e DCA application An U-SBR query result is
Result received Data short name received by a DCA

Stack Event ID

(create, read, update,

)

Data value
Data type

Query Result return

code

application.

DCA Programmer’s Guide, E93198 Revision 01, September 2018

102

CONFIDENTIAL — ORACLE RESTRICTED

Event
ID Event Type Scope | Instance Data When Recorded
2308 | U-SBR Query U-SBR Query | App e DCA application Sending the U-SBR query has
send failed Data short name failed because business logic
e Error code related issues (e.g., max. limit

of queries has been reached,
L2P mapping error, etc.), due
to ComAgent related issues
(e.g., routing) or due to
transport issues (e.g., timeout)

Except for event 2306, which is explicitly generated by the debug API functions, and event 2305, which
is generated when a runtime error is encountered, all other events are generated automatically by the DCA
framework when a specific point in the control flow is reached. For instance, Figure 79 illustrates the
IDIH event trace of a U-SBR query from the moment the query is initiated until the callback is invoked.

Immediate error (No TTRs are

3 {usually N
Sc"pt API Gall parameter-related - gengated in
Success | issues) this case)

I
Y
TTR 2302
+ Error (max. queries
limit reached, L2P
processsbro,uery mapping error, etc.
Success l
Send error
send
success :
I
Y
SBR Response

* Y

TTR 2308
TTR 2307

v

> TTR 2303

Y

Script Callback

Figure 79: IDIH Event Trace of an U-SBR Query

The event 2302 is preceded by event 2300, 2301, or 2303, depending on whether the U-SBR query has
been initiated from a Diameter request event handler, from a Diameter answer event handler or,

DCA Programmer’s Guide, E93198 Revision 01, September 2018 103

CONFIDENTIAL — ORACLE RESTRICTED

respectively, from the callback subroutine of a previous U-SBR query like for instance when a concurrent
update is retried.

13. Best Practices

This chapter summarizes the basic rules to follow when writing a DCA App.

13.1 The Main Part of the Perl Script

The main part of the Perl script is executed only once when the Perl script is compiled. It is therefore the
right place to perform sanity checks and post-process the DCA App configuration data. For instance the
code below:

if (! defined($dca::appConfig{XYZ Table}) ||
("ARRAY" ne ref($dca::appConfig{XYZ_Table})))
{
dca::application::logInfo("Missing XYZ configuration table");
die "Missing XYZ configuration table";

}

checks that the XYZ_Table exists and that it is a valid reference to an array. Note that single-row
configuration tables are references to hash tables (i.e., use HASH instead of ARRAY).

If the validation fails, then Alarm 33309 Script Compilation Error is raised when the Perl script is
compiled.

The DCA App configuration data for multi-row (i.e., not single-row) tables is stored in a Perl variable of
type array; in our example sdca: :appConfig{XYZ Table} is areference to such an array. Arrays are
however very inefficient data structures to perform real-time lookups because they require looping
through them each time. For this reason, depending on which fields a DCA App uses to lookup the
configuration data in real time, the DCA App would typically post-process the configuration data (in the
Perl script main part) by going record-by-record through it and copying each record into a separate hash
table where the tags are the values of the lookup field. If necessary multiple such hash table may be
prepared for real-time use, or other data structured (e.g., trees) may be created from the initial
configuration data.

Post-processing increases the memory usage (with the new data structures that are created) and increases
the Perl script compilation time (because the execution of the main part is always triggered by a
successful Perl script compilation and therefore it may be regarded as a side effect to compiling the Perl
script). However, the real-time performance gain is likely to be significant — probably orders of
magnitude depending on the DCA App configuration data size.

13.2 Perl Global Variables

Do not use Perl global variables (defined in the main part of the script) to pass data between the various
event handlers and callbacks in a DCA App. This is because the event handlers and callbacks are
executed on demand by a pool of Perl interpreter threads, which means:

1. Event handlers and callbacks that process the same Diameter message may be executed by different
Perl interpreters;

2. The same Perl interpreter executes event handlers and callbacks that process many different Diameter
messages.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 104

CONFIDENTIAL — ORACLE RESTRICTED

Use instead the transaction context variables defined in Section 11.2.2.

13.3 Returning Control from a Perl Subroutine

The control flow paths of an event handler or callback end in one of the following ways:
1. Adca::action APl call.
2. An U-SBR query.

The example below provides an example of how an event handler or callback ends with an U-SBR
query:
my S$result = dca::sbr::sbrInstance("sbr")->createOrRead ($key type,
dca: :sbr::KeyDataType: :INT64, S$imsi,
dca::sbr::StateDataType: :STRING, $sbr_state,
"create or read nonpref cb");
check for "synchronous" error
if (!defined (Sresult)) {
could not create the sbr request - depending on the business
logic,
log an error message and fall back, or raise runtime error
alarm:
die "could not create the SBR request";
} else {
the processing continues asynchronously
in the "create or read nonpref cb"
exit;
}
Note that no dca::action API call follows an U-SBR query because the U-SBR query is not going to

be sent at all in this case: a dca::action API call ends the processing of the Diameter message, no
query and no callback are executed any longer for the respective Diameter message.

3. A die statement.

Alarm 33304 DCA Runtime Errors is raised and the Diameter message is routed as indicated by the
configuration (see Section 9.4). The text specified as a parameter to the die statement is included in
the alarm’s additional information.

4. The control flow reaches (i) a return statement or (ii) the closing bracket that ends the Perl
subroutine scope. In this case, the action taken by the DCA framework depends on the value returned
from the respective Perl subroutine; in the latter case the return value is the result of the last executed
evaluation before the ending bracket is reached:

a. If the return value is grater or equal to zero, the Diameter message is forwarded.

b. If the return value is less than zero, Alarm 33304 DCA Runtime Errors is raised and the Diameter
message is routed as indicated by the configuration (see Section 9.4).

13.4 Callbacks

The first thing to do in a callback is to check the result code. Section 11.7.1.2 describes the error codes
that apply to all U-SBR API functions. For most DCA Apps is enough to check whether the U-SBR
query was successful (dca: :sbr: :ResultCode: : Ok Was returned) and continue processing and
respectively to abort execution (by invoking die) in all other cases.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 105

CONFIDENTIAL — ORACLE RESTRICTED

Note however that individual U-SBR queries have specific error codes — these are highlighted with a red
background throughout Section 11.7.2. Some of these specific error codes do not necessary involve that
the processing is aborted; for instance: dca: : sbr::ResultCode: :ErrRecExists in case of a
createOrRead query indicates that the query performed "read" rather than a "create”,

dca: :sbr::ResultCode: :ErrRecObsoleted in case of a concurrentUpdate indicates that the
query is repeated.

13.5 Sending multiple U-SBR Queries

There might be situations when processing a Diameter message requires a sequence of U-SBR queries
(e.g., aread and, based on the state data returned, also an update). It is not possible to send concurrent U-
SBR queries —i.e., more than one U-SBR query from the same Perl subroutine (event handler or
callback); if multiple U-SBR queries are initiated from a Perl subroutine, only the last one is sent.

Multiple U-SBR queries (during the processing of the same Diameter message) are sent sequentially, i.e.,
the event handler initiates the first U-SBR query, the callback of the first U-SBR query initiates the
second U-SBR query, the callback of the second U-SBR query initiates the third U-SBR query, etc., the
callback of the last U-SBR query routes the Diameter message (e.g., by using a dca: :action API call).

13.6 Accessing Lower Layer Data from Mediation

The DCA EDL API (see Section 11.1) as well as part of the Routing API (see Section 11.4 setART and
setPRT) is similar to the API offered by the Mediation feature. However, there are a couple of API
functions, supported by Mediation not available in DCA. This is because Mediation is invoked in the
context of Diameter Routing Layer (DRL), whereas the DCA operates at the application layer (i.e., one
layer above DRL). These API calls are:

Sparam->ingressConnectionName () ;
Return the name of the ingress connection if available.

Sparam->ingressPeerName () ;
Return the name of the ingress peer if available.

(where $param is retrieved as described in Section 11.1.1) and may be needed if the DCA business logic
depends on the connections or peers the Diameter messages are received from. This information may be

made available to DCA through Internal Variables, using the following procedure: (i) a Mediation script

uses the above API calls to retrieve the ingress connection/peer and (ii) writes it into an Internal Variable,
from where (iii) DCA can read when the event handler is invoked.

Note that the following API functions:

Sparam->egressConnectionName () ;
Return the name of the egress connection if available.

Sparam->egressPeerName () ;
Return the name of the egress peer if available.

are not usable in DCA because the routing decision is made after the DCA event handlers complete the
execution (and the message is returned back to DRL).

13.7 Performance Tuning

DCA Applications may require performance tuning depending upon the complexity of business logic and
need for MPS.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 106

CONFIDENTIAL — ORACLE RESTRICTED

Users can determine the need to do performance tuning based on:
e The number of DcaRequestTaskThr and DcaAnswerTaskThr threads needed on a DA-MP, which
depends on whether the DCA application performs computation on:
o Diameter request leg of the diameter transaction.
o Diameter answer leg of the diameter transaction.
e Both diameter request and diameter answer leg of the diameter transaction.

e The number of DcaSbrEventTaskThr threads, which must be directly proportional with number of
SBR transactions per diameter transactions performed by the DCA application.

e The number of SBR SGs in a U-SBR DB (resource domain) is based on how many SBR transactions
per second are planned to be processed by the respective U-SBR DB, which depends on the DCA
application requirements.

Note: Please contact the customer support team for tuning the performance parameters.

DCA Programmer’s Guide, E93198 Revision 01, September 2018 107

